Still working to recover. Please don't edit quite yet.

Difference between revisions of "race"

From Anarchopedia
Jump to: navigation, search
m (ethnicity moved to race: this is about the concept, not about the "fact"; answered on Beta's talk page)
m (Reverted edits by Avumote (Talk) to last version by Esperanza)
 
(42 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{Otheruses|Race (disambiguation)}}
+
{{check}}
  
{{totally disputed}}
+
In it's strictest biological sense '''race''' is the [[taxonomy|taxonomic]] classification of [[organism]]s below the [[species]] level. Classification at the [[subspecies|subspecific]] level has a controversial history, with some biologists rejecting the validity of attempts to classify below the species level altogether. In modern taxonomy the term subspecies is much more widely used, while the term "race" has persisted for humans. Although the term "race" has a specific biological meaning, it is also used in a non-biological sense to identify a variety of different socially constructed human groups, often with little biological relevance. The formal taxonomic usage of "race" requires that the taxons in question meet certain evolutionary criteria, usually on the basis of [[phylogenetic]] analysis.<ref name="CHV-kittles">S O Y Keita, R A Kittles, C D M Royal, G E Bonney, P Furbert-Harris, G M Dunston & C N Rotimi, 2004 "Conceptualizing human variation" in ''Nature Genetics''  36, S17 - S20 [http://www.nature.com/ng/journal/v36/n11s/full/ng1455.html Conceptualizing human variation]</ref>
  
{{toolong}}
+
Conceptions of race, as well as specific ways of grouping populations, vary by culture and over time, and are often basis for various kinds of [[slavery]], [[segregation]], other [[rights|human rights]] abuses and even [[genocide]]s. Although "race" is a valid taxonomic concept, it is not applicable to humans due to the unusual distribution of variation within the human species, the lack of distinct evolutionary lineages and the very recent origin of our species.<ref name="CHV-kittles"/> Scientists argue that human racial categories are imprecise, arbitrary, derived from [[custom]], have many exceptions, have many gradations, and that the numbers of races delineated vary according to the culture making the racial distinctions; they thus reject the notion that the biological classification of humans has any taxonomic rigour and validity.<ref>For example this statement expressing the official viewpoint of the American Anthropological Association at [http://www.aaanet.org/stmts/racepp.htm their webpage]: "Evidence from the analysis of genetics (e.g., DNA) indicates that most physical variation lies within so-called racial groups. This means that there is greater variation within "racial" groups than between them."</ref> Scientists studying human genetic variation are required by many journals to clearly define any groupings used in their analysis, for example:  "''Nature Genetics'' (Anonymous 2000), ''Archives of Pediatrics & Adolescent Medicine''(Rivara and Finberg 2001), and the ''British Medical Journal'' (Anonymous 1996), have separately issued guidelines stating that researchers should carefully define the terms they use for populations, and some journals have asked researchers to justify their use of racial or ethnic groups in research."<ref>[http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=16175499 The Use of Racial, Ethnic, and Ancestral Categories in Human Genetics Research] Race, Ethnicity, and Genetics Working Group. ''Am J Hum Genet.'' (2005) '''77(4):''' 519–532.</ref> Anthropologists contend that while some of the features by which racial categorizations are made may be based on genetic factors, the idea of race itself, and the accurate divisions of humans into groups based on selected hereditary features, are [[social construction|social construct]]s,<ref name="Society in Focus">Thompson, William and Joseph Hickey (2005) ''Society in Focus''. Pearson, Boston, MA ISBN0-205-41365-X</ref><ref name="Gordon64">Gordon 1964</ref><ref name="AAAonRace">[http://www.aaanet.org/stmts/racepp.htm American Anthropological Association Statement on "Race"]</ref><ref name="Palmie07">Palmie, Stephan (2007) "Genomics, Divination, 'Racecraft'" in ''American Ethnologist'' 34(2): 214</ref><ref name="Mevorach07">Mevorach, Katya Gibel (2007) "Race, Racism and Academic Complicity" in ''American Ethnologist'' 34(2): 239-240</ref><ref>Daniel A. Segal ''[http://links.jstor.org/sici?sici=0268-540X%28199110%297%3A5%3C7%3A%27EAORP%3E2.0.CO%3B2-7&size=LARGE&origin=JSTOR-enlargePage 'The European': Allegories of Racial Purity]'' Anthropology Today, Vol. 7, No. 5 (Oct., 1991), pp. 7-9 doi:10.2307/3032780</ref><ref>Bindon, Jim. University of Alabama. "[http://www.as.ua.edu/ant/bindon/ant275/presentations/POST_WWII.PDF#search=%22stanley%20marion%20garn%22 Post World War II"]. 2005. August 28, 2006.</ref>
 +
== History ==
  
{{summarystyle}}
+
=== Race in ancient civilizations ===
  
 +
Given visually complex social relationships, humans presumably have always observed and speculated about the physical differences among individuals and groups. But different societies have attributed markedly different meanings to these distinctions. For example, the [[Ancient Egyptian]] sacred text called ''Book of Gates'' identifies four [[ethnic group|ethnic]] categories that are now conventionally labeled "Egyptians", "Asiatics", "Libyans", and "Nubians", but such distinctions tended to conflate differences as defined by physical features such as skin tone, with [[tribe|tribal]] and [[nation]]al identity.  Classical civilizations from [[Ancient Rome|Rome]] to [[Ancient China|China]] tended to invest much more importance in [[family|familial]] or tribal affiliation than with ones physical appearance (Dikötter 1992; Goldenberg 2003). [[Ancient Greek]] and Roman authors also attempted to explain and categorize the visible differences between the peoples known to them. Such categories often also included fantastical human-like beings that were supposed to exist in far away lands. Some Roman writers adhered to an [[environmental determinism]] in which [[climate]] could affect the appearance and [[character]] of groups (Isaac 2004). But, in many ancient civilizations, individuals with widely varying physical appearances became full members of a [[society]] by growing up within that society or by adopting that society's [[culture|cultural]] [[norm (sociology)|norms]] (Snowden 1983; Lewis 1990). [[Medieval]] models of "race" mixed [[Graeco-Roman|Classical]] ideas with the notion that humanity as a whole was descended from [[Shem]], [[Ham]] and [[Japheth]], the three [[sons of Noah]], producing distinct [[Semitic]] ([[Asia]]n), [[Hamitic]] ([[Africa]]n), and [[Japhetic]] ([[Europe]]an) peoples.
  
The term '''race''' describes [[population]]s or [[Group (sociology)|group]]s of people as distinguished by various sets of characteristics and beliefs about common ancestry. The most widely used human racial [[category|categories]] are based on visible [[Trait (biological)|trait]]s (especially [[skin color]], [[face|facial features]] and hair texture), and self-identification.<ref>Bamshad, Michael and Steve E. Olson. [http://schools.tdsb.on.ca/rhking/departments/science/bio/evol_pop_dyn/does_race_exist.pdf "Does Race Exist?"]''Scientific American Magazine'' (10 November 2003).</ref>
+
===Colonialism===
 +
The word "race", along with many of the ideas now associated with the term, were products of [[European imperialism]] and [[colonization]] during the "age of exploration".(Smedley 1999)  As Europeans encountered people from different parts of the world, they speculated about the physical, social, and cultural differences among various human groups. The rise of the [[Atlantic slave trade]], which gradually displaced an earlier trade in [[slave]]s from throughout the world, created a further incentive to categorize human groups in order to justify the subordination of African slaves.(Meltzer 1993) Drawing on Classical sources and upon their own internal interactions &mdash; for example, the hostility between the English and [[Irish people|Irish]] was a powerful influence on early thinking about the differences between people (Takaki 1993) &mdash; Europeans began to sort themselves and others into groups associated with physical appearance and with beliefs about ingrained behaviors and capacities. A set of [[folklore|folk]] [[beliefs]] took hold that linked inherited physical differences between groups to inherited [[intellect]]ual, [[behavioral]], and [[moral]] qualities.(Banton 1977) Although similar ideas can be found in other cultures (Lewis 1990; Dikötter 1992), they appear not to have had as much influence upon their social structures as was found in Europe and the parts of the world colonized by Europeans. In particular the concept of [[whiteness]] was invented in colonial North America as a response to specific problems in the colony of [[Virginia]] in the latter half of the 17th Century, the concept allowed a "white" elite to continue to benefit economically and politically from the labour of others, both "white" and non-"white" alike.<ref name="helfand">Helfand, Judy. "[http://academic.udayton.edu/Race/01race/white11.htm Constructing Whiteness]" ''Race, Racism and the Law'', [http://academic.udayton.edu/front/ University of Dayton]</ref><ref name="sweet>Sweet, Frank B. (2005) "[http://backintyme.com/essays/?p=22 Why Did Virginia’s Rulers Invent a Color Line?]". ''Back in Tyme Essays'', History of the US Color Line. Back in Tyme publishing.</ref>
  
However, the first detailed analysis of the entire human genetic code — by the [[United States]] [[National Institutes of Health]] and the [[Department of Energy]] — and by [[Celera Genomics]] of [[Rockville]], [[Maryland]], a private company, "strengthens the notion that race has no genetic basis," even among people who identify themselves as of one race or ethnicity or another.<ref>"Life's Blueprint in Less Than an Inch" by Rick Weiss Washington, Post Staff Writer Sunday, February 11, 2001; p. A01</ref>[http://www.washingtonpost.com/ac2/wp-dyn/A54653-2001Feb10?language=printer]
+
=== Early attempts at classification ===
  
Conceptions of race, as well as specific ways of [[racial grouping|grouping races]], vary by culture and over time, and are often [[Controversy|controversial]] for scientific as well as [[social identity|social]] and [[identity politics|political]] reasons. Some argue that although "race" is a valid [[taxonomy|taxonomic]] concept in other species, it cannot be applied to humans.<ref>S O Y Keita, R A Kittles, C D M Royal, G E Bonney, P Furbert-Harris, G M Dunston & C N Rotimi, 2004 "Conceptualizing human variation" in ''Nature Genetics''  36, S17 - S20 [http://www.nature.com/ng/journal/v36/n11s/full/ng1455.html Conceptualizing human variation]</ref>  Mainstream scientists have argued that race definitions are imprecise, arbitrary, derived from [[custom]], have many exceptions, have many gradations, and that the numbers of races delineated vary according to the culture making the racial distinctions; they thus reject the notion that any definition of race pertaining to humans can have taxonomic rigour and validity.<ref>For example this statement expressing the official viewpoint of the American Anthropological Association at [http://www.aaanet.org/stmts/racepp.htm their webpage]: "Evidence from the analysis of genetics (e.g., DNA) indicates that most physical variation lies within so-called racial groups. This means that there is greater variation within "racial" groups than between them."</ref>  Today most scientists study human genotypic and phenotypic variation using more rigorous concepts such as "population" and "[[Cline (population genetics)|clinal gradation]]."  Many anthropologists contend that while the features on which racial categorizations are made may be based on genetic factors, the idea of race itself, and actual divisions of persons into groups based on selected hereditary features, are [[social construction|social construct]]s,<ref name="Society in Focus">{{cite book | last = Thompson | first = William | authorlink = | coauthors = Joseph Hickey | year = 2005 | title = Society in Focus | publisher = Pearson | location = Boston, MA| id = 0-205-41365-X}}</ref><ref name="Gordon64" /><ref name="AAAonRace" /><ref name="Palmie07" /><ref name="Mevorach07" /><ref>Daniel A. Segal ''[http://links.jstor.org/sici?sici=0268-540X%28199110%297%3A5%3C7%3A%27EAORP%3E2.0.CO%3B2-7&size=LARGE&origin=JSTOR-enlargePage 'The European': Allegories of Racial Purity]'' Anthropology Today, Vol. 7, No. 5 (Oct., 1991), pp. 7-9 doi:10.2307/3032780</ref><ref>Bindon, Jim. University of Alabama. "[http://www.as.ua.edu/ant/bindon/ant275/presentations/POST_WWII.PDF#search=%22stanley%20marion%20garn%22 Post World War II"]. 2005. August 28, 2006.</ref> whereas a new opinion among geneticists is that it should be a valid mean of classification, although in a modified form based on [[DNA]] analysis.<ref>http://med.stanford.edu/news_releases/2005/january/racial-data.htm</ref><ref>http://genomebiology.com/2002/3/7/comment/2007</ref><ref>http://query.nytimes.com/gst/fullpage.html?sec=health&res=9C06E2D81331F933A15750C0A9659C8B63</ref><ref>http://www.usatoday.com/news/nation/2005-08-16-dna_x.htm</ref>
+
The first attempts to classify humans by categories of "race" date from the 17th century, along with the development of European imperialism and colonization around the world. The first post-Classical published classification of humans into distinct races seems to be François Bernier's ''Nouvelle division de la terre par les différents espèces ou races qui l'habitent'' ("New division of Earth by the different species or races which inhabit it"), published in 1684.
== History ==
+
===Etymology===
+
Not until the [[16th century]] did the word "race" enter into the [[English language]], from the [[French language|French]] "''race''" - "race, breed, lineage" (which in turn was probably a [[Loanword|loan]] from the [[Italian language|Italian]] "''razza''").  Meanings of the term in the 16th century included "wines with a characteristic flavour", "people with common occupation", and "generation". A meaning of "tribe" or "nation" emerged in the [[17th century]].  The modern meaning, "one of the major divisions of mankind", dates to the late [[18th century]], but it never became exclusive (note the continued use of the expression "the human race").  The ultimate origin of the word is unknown; suggestions include [[Arabic language|Arabic]] ''[[Rho (letter)|ra'is]]'' meaning "head", but also "beginning" or "origin".
+
  
=== Race in ancient civilizations ===
+
=== 17th and 18th century ===
{{Seealso|Ancient Egypt and race}}
+
According to philosopher Michel Foucault, theories of both racial and class conflict can be traced to 17th century political debates about innate differences among ethnicities. In England radicals such as John Lilburne emphasised conflicts between [[Saxon]] and [[Norman]]s peoples. In France Henri de Boulainvilliers argued that the Germanic [[Franks]] possessed a natural right to leadership, in contrast to descendants of the [[Gauls]]. In the 18th century, the differences among human groups became a focus of scientific investigation (Todorov 1993). Initially, scholars focused on cataloging and describing "The Natural Varieties of Mankind," as Johann Friedrich Blumenbach entitled his 1775 text (which established five major divisions of humans, still reflected in some "racial" classifications). From the 17th through the 19th centuries, the merging of folk beliefs about group differences with scientific explanations of those differences produced what one scholar has called an "[[ideology]] of race" (Smedley 1999). According to this ideology, races are primordial, natural, enduring and distinct. It was further argued that some groups may be the result of mixture between formerly distinct populations, but that careful study could distinguish the ancestral races that had combined to produce admixed groups.
Given visually complex social relationships, humans presumably have always observed and speculated about the physical differences among individuals and groups. But different societies have attributed markedly different meanings to these distinctions. For example, the [[Ancient Egyptian]] sacred text called ''[[Book of Gates]]'' identifies four [[ethnicity|ethnic]] categories that are now conventionally labeled "Egyptians", "Asiatics", "Libyans", and "Nubians", but such distinctions tended to conflate differences as defined by physical features such as skin tone, with [[tribe|tribal]] and [[nation]]al identity. [[Classical civilization]]s from [[Ancient Rome|Rome]] to [[Ancient China|China]] tended to invest much more importance in [[family|familial]] or tribal affiliation than with ones physical appearance (Dikötter 1992; Goldenberg 2003). [[Ancient Greek]] and Roman authors also attempted to explain and categorize visible [[biologic]]al differences among peoples known to them.  Such categories often also included fantastical human-like beings that were supposed to exist in far-away lands.  Some Roman writers adhered to an [[environmental determinism]] in which [[climate]] could affect the appearance and [[character]] of groups (Isaac 2004). But, in many ancient civilizations, individuals with widely varying physical appearances became full members of a [[society]] by growing up within that society or by adopting that society's [[culture|cultural]] [[norm (sociology)|norms]] (Snowden 1983; Lewis 1990). [[Medieval]] models of "race" mixed [[Graeco-Roman|Classical]] ideas with the notion that humanity as a whole was descended from [[Shem]], [[Ham]] and [[Japheth]], the three [[sons of Noah]], producing distinct [[Semitic]] ([[Asia]]n), [[Hamitic]] ([[Africa]]n), and [[Japhetic]] ([[Europe]]an) peoples.
+
  
===Age of Discovery===
+
=== 19th century ===
The word "race", along with many of the ideas now associated with the term, were products of [[European imperialism]] and [[colonization]] during the [[age of exploration]].(Smedley 1999)  As Europeans encountered people from different parts of the [[world]], they speculated about the physical, social, and cultural differences among various human groupsThe rise of the [[Atlantic slave trade]], which gradually displaced an earlier [[trade]] in [[slave]]s from throughout the world, created a further [[incentive]] to categorize human groups in order to justify the subordination of African slaves.(Meltzer 1993)  Drawing on Classical sources and upon their own internal interactions &mdash; for example, the hostility between the [[English people|English]] and [[Irish people|Irish]] was a powerful influence on early thinking about the differences between people (Takaki 1993) &mdash; Europeans began to sort themselves and others into groups associated with physical appearance and with deeply ingrained behaviors and capacities. A set of [[folklore|folk]] [[beliefs]] took hold that linked inherited physical differences between groups to inherited [[intellect]]ual, [[behavioral]], and [[moral]] qualities.(Banton 1977) Although similar ideas can be found in other cultures (Lewis 1990; Dikötter 1992), they appear not to have had as much influence upon their social structures as was found in Europe and the parts of the world colonized by Europeans. However, often brutal conflicts between ethnic groups have existed throughout history and across the world, and [[racial prejudice]] against Africans also exists today in non-colonised countries such as [[China]] and [[Japan]].
+
The 19th century saw attempts to reinforce "race" as a biological concept, a number of [[natural science|natural scientists]] wrote on race: Georges Cuvier, Charles Darwin, Alfred Wallace, Francis Galton, James Cowles Pritchard, Louis Agassiz, Charles Pickering NMI|Charles Pickering, and Johann Friedrich BlumenbachAs the science of [[anthropology]] took shape in the 19th century, European and American scientists increasingly sought explanations for the behavioral and cultural differences they attributed to groups (Stanton 1960). For example, using anthropometrics, invented by Francis Galton and Alphonse Bertillon, they measured the shapes and sizes of skulls and related the results to group differences in intelligence or other attributes (Lieberman 2001).
  
=== Scientific concepts of "race" ===
+
These scientists made three claims about race: first, that races are objective, naturally occurring divisions of humanity; second, that there is a strong relationship between biological races and other human phenomena (such as forms of activity and interpersonal relations and culture, and by extension the relative material success of cultures); third, that "race" is therefore a valid scientific category that can be used to explain and predict individual and group behavior. Races were distinguished by skin color, facial type, [[cranium|cranial]] profile and size, texture and color of hair. Moreover, races were almost universally considered to reflect group differences in moral character and intelligence.
{{further|[[Race (historical definitions)]], [[Scientific racism]], [[Craniofacial anthropometry]]}}
+
  
The first scientific attempts to classify humans by categories of race date from the 17th century, along with the development of European imperialism and colonization around the world. The first post-[[Graeco-Roman|Classical]] published classification of humans into distinct races seems to be [[François Bernier]]'s ''Nouvelle division de la terre par les différents espèces ou races qui l'habitent'' ("New division of Earth by the different species or races which inhabit it"), published in 1684.
+
The [[eugenics]] movement of the late 19th and early 20th centuries, inspired by Arthur Gobineau's ''An Essay on the Inequality of the Human Races'' (1853-1855) and Vacher de Lapouge's "anthroposociology", asserted as self-evident the biological inferiority of particular groups (Kevles 1985). In many parts of the world, the idea of race became a way of rigidly dividing groups by culture as well as by physical appearances (Hannaford 1996). Campaigns of oppression and [[genocide]] were often motivated by supposed racial differences (Horowitz 2001).
  
=== 17th and 18th century ===
+
In Charles Darwin's most controversial book, ''The Descent of Man'', he made strong suggestions of racial differences and European superiority. In Darwin's view, stronger tribes of humans always replaced weaker tribes. As savage tribes came in conflict with civilized nations, such as England, the less advanced people were destroyed. The destruction of the weaker peoples seemed desirable to many scientists at the time. It was thought that "fit" people would replace the "unfit" and human evolution would be accelerated.<ref>Charles Darwin, [http://www.literature.org/authors/darwin-charles/the-descent-of-man/chapter-07.html ''The Descent of Man'', Chapter 7 - On the Races of Man.] Consider, for instance, the following excerpt: "We thus see that many of the wilder races of man are apt to suffer much in health when subjected to changed conditions or habits of life, and not exclusively from being transported to a new climate. Mere alterations in habits, which do not appear injurious in themselves, seem to have this same effect; and in several cases the children are particularly liable to suffer. It has often been said, as Mr. Macnamara remarks, that man can resist with impunity the greatest diversities of climate and other changes; but this is true only of the civilised races."</ref> Nevertheless, he also noted the great difficulty naturalists had in trying to decide how many "races" there actually were (Darwin was himself a [[monogenesis|monogenist]] on the question of race, believing that all humans were of the same species and finding "race" to be a somewhat arbitrary distinction among groups):
According to philosopher [[Michel Foucault]], theories of both racial and class conflict can be traced to 17th century political debates about innate differences among ethnicities. In England radicals such as [[John Lilburne]] emphasised conflicts between [[Saxon]] and [[Normans|Norman]] peoples. In France [[Henri de Boulainvilliers]] argued that the Germanic [[Franks]] possessed a natural right to leadership, in contrast to descendants of the [[Gauls]]. In the 18th century, the differences among human groups became a focus of scientific investigation (Todorov 1993). Initially, scholars focused on cataloging and describing "[[The Natural Varieties of Mankind]]," as [[Johann Friedrich Blumenbach]] entitled his 1775 text (which established the five major divisions of humans still reflected in some racial classifications). From the 17th through the 19th centuries, the merging of folk beliefs about group differences with scientific explanations of those differences produced what one scholar has called an "[[ideology]] of race" (Smedley 1999). According to this ideology, races are primordial, natural, enduring and distinct. It was further argued that some groups may be the result of mixture between formerly distinct populations, but that careful study could distinguish the ancestral races that had combined to produce admixed groups.
+
<blockquote><em style="color:normal;background-color:lightgrey;font-style:normal">Man has been studied more carefully than any other animal, and yet there is the greatest possible diversity amongst capable judges whether he should be classed as a single species or race, or as two (Virey), as three (Jacquinot), as four (Kant), five (Blumenbach), six (Buffon), seven (Hunter), eight (Agassiz), eleven (Pickering), fifteen (Bory St. Vincent), sixteen (Desmoulins), twenty-two (Morton), sixty (Crawfurd), or as sixty-three, according to Burke. This diversity of judgment does not prove that the races ought not to be ranked as species, but it shews that they graduate into each other, and that it is hardly possible to discover clear distinctive characters between them.</em></blockquote>
  
=== 19th century ===
+
==Racism==
The 19th century saw attempts to change race from a taxonomic to a biological concept. In the 19th century a number of [[natural science|natural scientists]] wrote on race: [[Georges Cuvier]], [[Charles Darwin]], [[Alfred Wallace]], [[Francis Galton]], [[James Cowles Pritchard]], [[Louis Agassiz]], [[Charles Pickering NMI|Charles Pickering]], and [[Johann Friedrich Blumenbach]].  As the science of [[anthropology]] took shape in the 19th century, European and American scientists increasingly sought explanations for the behavioral and cultural differences they attributed to groups (Stanton 1960). For example, using [[anthropometrics]], invented by Francis Galton and [[Alphonse Bertillon]], they measured the shapes and sizes of skulls and related the results to group differences in intelligence or other attributes (Lieberman 2001).
+
  
These scientists made three claims about race: first, that races are objective, naturally occurring divisions of humanity; second, that there is a strong relationship between biological races and other human phenomena (such as [[forms of activity and interpersonal relations]] and culture, and by extension the relative [[materialism|material success]] of cultures), thus biologizing the notion of "race", as Foucault demonstrated in his historical analysis; third, that race is therefore a valid scientific category that can be used to explain and predict individual and group behavior. Races were distinguished by [[human skin color|skin color]], [[facial type]], [[cranium|cranial]] profile and size, texture and color of hair. Moreover, races were almost universally considered to reflect group differences in moral character and [[intelligence (trait)|intelligence]].
+
During [[the Enlightenment]], racial classifications were used to justify [[slavery|enslavement]] of those deemed to be of "inferior", non-White races, and thus supposedly best fitted for lives of toil under White supervision. These classifications made the distance between races seem nearly as broad as that between species, easing unsettling questions about the appropriateness of such treatment of humans. The practice was at the time generally accepted by both scientific and lay communities.
  
The [[eugenics]] movement of the late 19th and early 20th centuries, inspired by [[Arthur Gobineau]]'s ''[[An Essay on the Inequality of the Human Races]]'' (1853-1855) and [[Vacher de Lapouge]]'s "anthroposociology", asserted as self-evident the biological inferiority of particular groups (Kevles 1985). In many parts of the world, the idea of race became a way of rigidly dividing groups by culture as well as by physical appearances (Hannaford 1996). Campaigns of oppression and [[genocide]] were often motivated by supposed racial differences (Horowitz 2001).
+
[[Arthur Gobineau]]'s ''[[An Essay on the Inequality of the Human Races]]'' (1853-1855) was one of the milestones in the new [[racist]] [[discourse]], along with [[Vacher de Lapouge]]'s "anthroposociology." They posited the historical existence of national races such as German and French, branching from basal races supposed to have existed for millennia, such as the [[Aryan race]], and believed political boundaries should mirror these supposed racial ones.
  
In Charles Darwin's most controversial book, ''[[The Descent of Man]]'', he made strong suggestions of racial differences and European superiority. In Darwin's view, stronger tribes of humans always replaced weaker tribesAs savage tribes came in conflict with civilized nations, such as England, the less advanced people were destroyed. The destruction of the weaker peoples seemed desirable to many scientists at the time.  It was thought that "fit" people would replace the "unfit" and human evolution would be accelerated.<ref>Charles Darwin, [http://www.literature.org/authors/darwin-charles/the-descent-of-man/chapter-07.html ''The Descent of Man'', Chapter 7 - On the Races of Man.] Consider, for instance, the following excerpt: "We thus see that many of the wilder races of man are apt to suffer much in health when subjected to changed conditions or habits of life, and not exclusively from being transported to a new climate. Mere alterations in habits, which do not appear injurious in themselves, seem to have this same effect; and in several cases the children are particularly liable to suffer. It has often been said, as Mr. Macnamara remarks, that man can resist with impunity the greatest diversities of climate and other changes; but this is true only of the civilised races."</ref> Nevertheless, he also noted the great difficulty naturalists had in trying to decide how many "races" there actually were (Darwin was himself a [[monogenesis|monogenist]] on the question of race, believing that all humans were of the same species and finding "race" to be a somewhat arbitrary distinction among groups):
+
Later, one of [[Adolf Hitler|Hitler]]'s favorite sayings was, "Politics is applied biology". Hitler's ideas of racial purity led to unprecedented atrocities in EuropeHitler and others enacted race laws used to persecute and murder millions of Jews, who were seen as a race. Since then, [[ethnic cleansing]] has occurred in the [[Balkans]] and [[Rwandan Genocide|Rwanda]]. ''Ethnic cleansing'' might be seen as another name for the tribal warfare and mass murder that has afflicted human society for ages, but, in modern times, atrocities have regularly been associated with the attempted use of racial inferiority claims to dehumanize some group. Claiming a scientific basis for negative evaluations can give greater credence to such an ideological agenda.
<blockquote>Man has been studied more carefully than any other animal, and yet there is the greatest possible diversity amongst capable judges whether he should be classed as a single species or race, or as two (Virey), as three (Jacquinot), as four (Kant), five (Blumenbach), six (Buffon), seven (Hunter), eight (Agassiz), eleven (Pickering), fifteen (Bory St. Vincent), sixteen (Desmoulins), twenty-two (Morton), sixty (Crawfurd), or as sixty-three, according to Burke. This diversity of judgment does not prove that the races ought not to be ranked as species, but it shews that they graduate into each other, and that it is hardly possible to discover clear distinctive characters between them.
+
</blockquote>
+
  
==20th- and 21st-Century debates over race==
+
Racial inequality has been a concern of United States politicians and legislators since the country's founding. In the 19th century most White Americans (including [[abolitionist]]s) explained racial inequality as an inevitable consequence of biological differences.{{face}} Since the mid-20th century, political and civic leaders as well as scientists have debated to what extent racial inequality is cultural in origin. Some argue that current inequalities between Blacks and Whites are primarily the result of cultural and historical factors, the result of past racism, of [[slavery]] and of [[Racial segregation|segregation]], and so could be redressed through such programs as [[affirmative action]] and [[Head Start]]. Others work to reduce tax funding of [[remedial programs]] for minorities. They have based their advocacy on aptitude test data that, according to them, shows that racial ability differences are biological in origin and cannot be leveled even by intensive educational efforts. In [[electoral politics]], many more ethnic minorities have recently won important offices in Western nations than in earlier times, although the highest offices tend to remain in the hands of Whites.
===Systems of categorization preferred depends on scale ===
+
  
Discussions of race, how humans might be divided on an [[infraspecies]] basis, are made more complicated because race research has taken place on at least two scales (global and national) and from the point of view of different research aims. Evolutionary scientists are typically interested in humanity as a whole; and taxonomic racial classifications are often either unhelpful to, or refuted by, studies that focus on the question of global human diversity. Policy-makers and applied professions (such as law-enforcement or medicine), however, are typically concerned only with [[genotypic]] or [[phenotypic]] variation at the national or sub-national scale, and find taxonomic racial categories useful.
+
In his famous ''[[Letter from Birmingham Jail]]'', the Rev. Dr. [[Martin Luther King Jr.]] observed:
  
These distinctions of research aims and scale can be seen by the example of three major research papers published since [[2002]]: Rosenberg et al. (2002), Serre & Pääbo (2004), and Tang et al. (2005). Both Rosenberg et al. and Serre & Pääbo study global genetic variation, but they arrive at different conclusions. Serre & Pääbo attribute their differing conclusions to experimental design. While Rosenberg et al. studied individuals from populations across the globe without concentrating on particular geographical areas, Serre & Pääbo chose individuals for study from remote and discrete regions. By sampling individuals from major populations on each continent, Rosenberg et al. find evidence for genetic "clusters" (i.e., groupings that might plausibly be equated to earlier races). In contrast, Serre & Pääbo find that with respect to geography human genetic variation is continuous and "[[Cline (population genetics)|clinal]]," which denies the presumed clear assignability of all individuals to traditional racial categories. The research interest of Rosenberg et al. is medicine (i.e., [[epidemiology]]), whereas the research interest of Serre & Pääbo is human evolution. Tang et al. studied genetic variation within the [[United States]] with an interest in whether race/ethnicity or geography is of greater utility to epidemiological research. Tang et al. find that race/ethnic membership (or membership in one of the genetic "clusters" of Rosenberg et al.) is of greater utility within the United States that is one's corrent geographical location. Further recent research<ref>[http://www.journals.uchicago.edu/AJHG/journal/issues/v77n3/42406/brief/42406.abstract.html "An Algorithm to Construct Genetically Similar Subsets of Families with the Use of Self-Reported Ethnicity Information"], Andrew D. Skol, Rui Xiao, Michael Boehnke, and Veterans Affairs Cooperative Study 366 Investigators, Department of Biostatistics, University of Michigan, Ann Arbor in ''Am. J. Hum. Genet.'', 77:346-354, 2005.</ref> correlating self-identified race with [[population genetics|population genetic]] structure<ref>[http://pritch.bsd.uchicago.edu/software/structure2_1.html Structure 2.1]</ref> echoed the conclusions in Tang. Indeed, the contrasting conclusions between global and national levels of analysis were predicted by Serre & Pääbo:
+
{{quotation|History is the long and tragic story of the fact that privileged groups seldom give up their privileges voluntarily. Individuals may see the moral light and voluntarily give up their unjust posture; but as [[Reinhold Niebuhr]] has reminded us, groups are more immoral than individuals.}}
{{quotation|It is worth noting that the colonization history of the United States has resulted in a "sampling" of the human population made up largely of people from western Europe, western Africa, and Southeast Asia. Thus, studies in which individuals from Europe, sub-Saharan Africa, and Southeast Asia are [distinguished]... might be an adequate description of the major components of the U.S. population.}}
+
Three main components of the U.S. population having been drawn from remote parts of the world, the long clinal bridges between the groups that exist in Eurasia have disappeared and those populations seem rather starkly isolated when examined in their new environment.
+
  
===Race as subspecies===
+
Dr. King's hope, expressed in his [[I Have a Dream]] speech, was that the [[civil rights]] struggle would one day produce a society where people were not "judged by the color of their skin, but by the content of their character."
{{further information|[[subspecies]]}}
+
With the advent of the [[modern synthesis]] in the early 20th century, many biologists sought to use evolutionary models and populations genetics to develop more rigorous definitions of "race." An early attempt was to identify races as subspecies (a subspecies is a clearly distinguishable group forming all or part of a [[species]]). A ''monotypic'' species has no races, or rather one race comprising the whole species. Monotypic species can occur in several ways:
+
  
 +
Because of the identification of the concept of race with political oppression, many natural and social scientists today are wary of using race to describe human variation. Others simply find race a less useful system of categorization than some other systems. Still others, however, argue that race is of continuing utility and validity in scientific research notwithstanding the objections raised against it.
 +
 +
Some concepts of race are criticized as being based on mere [[conventions]], [[traditions]], or [[statistics]]. The number of racial [[categories]] often seems arbitrary since different authorities define different numbers of races.  Often unique individual human beings seem to get ignored.  The criteria used to divide the human species are also criticized as being arbitrary, and and it is claimed that they often only focus on superficial marker traits such as skin color, geographical range, and thus the traits being used pertain to a very few genes out of a very large human genome.  The varying [[epigenetic]] expressions of the same genes is rarely taken into account.
 +
 +
== Science ==
 +
Humans are the most widely studied species of organism on the planet. As such the natural and social sciences have produced a great deal of data regarding human variation and how it is partitioned.
 +
 +
=== Models of human evolution ===
 +
Modern science maintains that any biological concept for human "races" needs to be compatible with evolutionary theory, for example Keita ''et al.'' state: "Current systematic theory emphasizes that taxonomy at all levels should reflect evolutionary relationships."<ref name="keita"/> Lieberman and Jackson have therefore asked  what implications current models of human evolution may have for a conception of biological race.<ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 232-234</ref> 
 +
 +
Today, all [[person|people]] are classified as belonging to the species ''Homo sapiens sapiens'' a single subspecies (or "race").  However, this is not the first species of hominins: the first species of genus ''Homo'', ''Homo habilis,'' evolved in East Africa at least 2 million years ago, and members of this species populated different parts of Africa in a relatively short time. ''Homo erectus'' evolved more than 1.8 million years ago, and by 1.5 million years ago had spread throughout the Old World. Virtually all physical anthropologists agree that ''Homo sapiens'' evolved from ''Homo erectus.''  Anthropologists have been divided as to whether ''Homo sapiens'' evolved as one interconnected species from ''H. erectus'' (called the Multiregional Model, or the Regional Continuity Model), or evolved only in East Africa, and then migrated out of Africa and replaced ''H. erectus'' populations throughout the Old World (called the Recent African Origin Model (RAO)). Anthropologists continue to debate both possibilities, and the evidence is technically ambiguous as to which model is correct, although most evidence and scientists currently support RAO.
 +
 +
==== Multiregional model====
 +
 +
Advocates of the Multiregional model, primarily [[Milford Wolpoff]] and his associates, have argued that the simultaneous evolution of ''H. sapiens'' in different parts of Europe and Asia would have been possible if there were a degree of [[gene flow]] between archaic populations.<ref>Thorne, Alan, and Milford Wolpoff (1992) "The Multiregional Evolution of humans" in ''Scientific American, April 76-93; Smith, Fred and Frank Spencer, eds (1984) ''The Origin of Modern Humans''</ref> Similarities of morphological features between archaic European and Chinese populations and modern ''H. sapiens'' from the same regions, Wolpoff argues, support a regional continuity only possible within the Multiregional model.<ref>Robert H. Lavenda and Emily A. Shultz ''Anthropology, what does it mean to be human?'' Oxford (New York:2008) 132.</ref>  Wolpoff and others further argue that this model is consistent with [[Cline (population genetics)|clinal patterns]] of phenotypic variation (Wolpoff 1993). Lieberman and Jackson have related this theory to race with the following statement:
 +
 +
{{cquote|The major implication for race in the multiregional evolution continuity model involves the time depth of a million or more years in which race differentiation might evolve in diverse ecological regions [...]. This must be balanced against the degree of gene flow and the transregional operation of natural selection on encephalization due to development of tools and, more broadly, culture.<ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 237</ref>}}
 +
 +
====Out of Africa model====
 +
{{seealso|Recent single origin hypothesis}}
 +
 +
According to the Out of Africa Model, developed by [[Christopher Stringer]] and Peter Andrews, modern ''Homo sapiens'' evolved in Africa 200,000 years ago. ''H. sapiens'' began migrating from Africa around 50,000 years ago and eventually replaced existing [[hominid]] species in Europe and Asia.<ref>[http://news.nationalgeographic.com/news/2007/07/070718-african-origin.html Modern Humans Came Out of Africa, "Definitive" Study Says]</ref><ref>Christopher Stringer and Peter Andrews  (1988) "Genetic and Fossil Evidence for the Origin of Modern Humans" in ''Science'' 239: 1263-1268</ref>    This model has gained support by recent research using [[mitochondrial DNA]] (mtDNA). After analysing genealogy trees constructed using 133 types of mtDNA, they concluded that all were descended from a woman from Africa, dubbed [[Mitochondrial Eve]].<ref>Rebecca L. Cann, Mark Stoneking, Allan C. Wilson (1987) "Mitochondrial DNA and human evolution" in ''Nature'' 325: 31-36)</ref>  Lieberman and Jackson have related this theory to race with the following comment:
 +
 +
{{cquote|There are three major implications of this model for the race concept. First, the shallow time dimension minimizes the degree to which racial differences could have evolved [...]. Second, the mitochondrial DNA model presents a view that is very much different from Carleton Coon's (1962) concerning the time at which Africans passed the threshold from archaic to modern, thereby minimizing race differences and avoiding racist implications. However, the model, as interpreted by Wainscoat et al. (1989:34), does describe "a major division of human populations into an African and a Eurasian group." This conclusion could best be used to emphasize the degree of biological differences, and thereby provide support for the race concept. Third, the replacement of preexisting members of genus Homo (with little gene flow) implies several possible causes from disease epidemics to extermination. If the latter, then from a contemporary viewpoint, xenophobia or racism may have been practiced"<ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 235–236</ref>}}
 +
 +
==== Comparison of the two models ====
 +
Lieberman and Jackson have argued that while advocates of both the Multiregional Model and the Out of Africa Model use the word race and make racial assumptions, none define the term.<ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 237</ref>  They conclude that
 +
"Each model has implications that both magnify and minimize the differences between races. Yet each model seems to take race and races as a conceptual reality. The net result is that those anthropologists who prefer to view races as a reality are encouraged to do so" and conclude that students of human evolution would be better off avoiding the word race, and instead describe genetic differences in terms of populations and clinal gradations.<ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 239</ref>
 +
 +
=== Race as subspecies ===
 +
{{further|[[Race (biology)]] and [[Subspecies]].}}
 +
 +
With the advent of the [[modern synthesis]] in the early 20th century, many biologists sought to use evolutionary models and populations genetics in an attempt to formalise taxonomy below the species level. The term subspecies is used by biologists when a group of organisms are classified in such a way. In biology the term "race" is very rarely used because it is ambiguous, "'Race' is not being defined or used consistently; its referents are varied and shift depending on context. The term is often used colloquially to refer to a range of human groupings. Religious, cultural, social, national, ethnic, linguistic, genetic, geographical and anatomical groups have been and sometimes still are called 'races'".<ref name="Keita"/> Generally when it is used it is synonymous with subspecies.<ref name="Keita">Keita et al. 2004</ref><ref name="Templeton">Templeton, 1998</ref><ref>Long and Kittles, 2003</ref> One of the main obstacles to identifying subspecies is that, while it is a recognised taxonomic term, it has no precise definition.<ref name="Templeton"/>
 +
 +
Some species of organisms do not appear to fragment into subgroups, while others do seem to form such subspecific groups. A monotypic species comprises a single group or rather a single subspecies. Monotypic species can occur in several ways:
 
* All members of the species are very similar and cannot be sensibly divided into biologically significant subcategories.   
 
* All members of the species are very similar and cannot be sensibly divided into biologically significant subcategories.   
* The individuals vary considerably but the variation is essentially random and largely meaningless so far as genetic transmission of these variations is concerned (many plant species fit into this category, which is why horticulturists interested in preserving, say, a particular flower color avoid propagation from seed, and instead use vegetative methods like propagation from cuttings).
+
* The individuals vary considerably but the variation is essentially random and largely meaningless so far as genetic transmission of these variations is concerned (many plant species fit into this category, which is why horticulturists interested in preserving, say, a particular flower color avoid propagation from seed, and instead use vegetative methods like propagation from cuttings).
 
* The variation among individuals is noticeable and follows a pattern, but there are no clear dividing lines among separate groups: they fade imperceptibly into one another. Such clinal variation always indicates substantial [[gene flow]] among the apparently separate groups that make up the population(s). Populations that have a steady, substantial gene flow among them are likely to represent a monotypic species even when a fair degree of genetic variation is obvious.
 
* The variation among individuals is noticeable and follows a pattern, but there are no clear dividing lines among separate groups: they fade imperceptibly into one another. Such clinal variation always indicates substantial [[gene flow]] among the apparently separate groups that make up the population(s). Populations that have a steady, substantial gene flow among them are likely to represent a monotypic species even when a fair degree of genetic variation is obvious.
  
A ''polytypic'' species has two or more races (subspecies, or, in current parlance, two or more ''sub-types''). These are separate groups that are clearly distinct from one another and do not generally interbreed (although there may be a relatively narrow hybridization zone), but which ''would'' interbreed freely if given the chance to do so. Note that groups that do ''not'' interbreed with a high degree of success, even if brought together such that they had the opportunity to do so, are not races: they are separate species.  
+
A ''polytypic'' species has two or more subspecies. These are separate populations that are more genetically different from one another and that are more reproductively isolated, gene flow between these populations is much reduced leading to genetic differentiation.
 +
 
 +
====Morphological subspecies====
 +
Traditionally subspecies are seen as geographically isolated and genetically differentiated populations.<ref name="Templeton"/> Or to put it another way "the designation 'subspecies' is used to indicate an objective degree of microevolutionary divergence"<ref name="Keita"/> One objection to this idea is that it does not identify any degree of differentiation, therefore any population that is somewhat biologically different could be considered a subspecies, even to the level of a local population. As a result it is necessary to impose a threshold on the level of difference that is required for a population to be designated a subspecies.<ref name="Templeton"/> This effectively means that populations of organisms must have reached a certain measurable level of difference in order to be recognised as subspecies.
 +
[[Dean Amadon]] proposed in 1949 that subspecies would be defined according to the seventy-five percent rule which means that 75% of a population must lie outside 99% of the range of other populations for a given defining [[morphology (biology)|morphological]] character or a set of characters. The 75 percent rule still has defenders but other scholars argue that it should be replaced with 90 or 95 percent rule.<ref>AMADON, D. 1949. The seventy-five percent rule for subspecies. Condor 51:250-258.</ref><ref>MAYR, E. 1969. Principles of Systematic Zoology. McGraw-Hill, New York.</ref><ref>Patten MA & Unitt P. (2002). Diagnosability versus mean differences of sage sparrow subspecies. Auk. vol 119, no 1. p. 26-35.</ref>
 +
 
 +
When biologists study non-human populations, the standard threshold at which [[morphology (biology)|morphological]] diversity between two different populations is considered differentiated enough to be classified as subspecies is set at 70-75%. Smith et al. write:
  
This attempt at conceptual precision has gained currency with many biologists, especially zoologists and botanists.  Many physical anthropologists have concluded that ''H. sapiens'' was polytypic in the past (''H. sapiens neandertalensis'', now extinct, having been a subspecies of ''H. sapiens''). All human beings now alive, however, are regarded as belonging to the '''same''' subspecies: ''Homo sapiens sapiens'' - in effect, ''H. sapiens'' is now monotypic.<ref>Alan R. Templeton (1988) "Human Races: A Genetic and Evolutionary Perspective" ''American Anthropologist'' Vol. 100, No. 3: 632-650.</ref>
+
<blockquote>The non-discrete nature of subspecies is evident from their definition as geographic segments of any given gonochoristic (bisexually reproducing) species differing from each other to a reasonably practical degree (e.g., at least 70-75%), but to less than totality. All subspecies are allopatric (either dichopatric [with non-contiguous ranges] or parapatric [with contiguous ranges], except for cases of circular overlap with sympatry); sympatry is conclusive evidence (except for cases of circular overlap) of allospecificity (separate specific status). Parapatric subspecies interbreed and exhibit intergradation in contact zones, but such taxa maintain the required level of distinction in one or more characters outside of those zones. Dichopatric populations are regarded as subspecies if they fail to exhibit full differentiation (i.e., exhibit overlap in variation of their differentiae up to 25-30%), even in the absence of contact (overlap exceeding 25-30% does not qualify for taxonomic recognition of either dichopatric populations or of parapatric populations outside of their zones of intergradation). Phenotypic adjustment to differing environmental conditions through natural selection is likely the primary factor in divergence of parapatric subspecies, and undoubtedly is involved in some dichopaffic subspecies. The founder effect and genetic drift are involved more in the latter than in the former.</blockquote>
  
===Races as clades===
+
Thus, according to the ''seventy-five percent rule'' two populations represent different subspecies if the morphological differences between them reach between 25-30%.
By the 1970s many evolutionary scientists were avoiding the concept of "subspecies" as a [[taxonomy|taxonomic]] category for four reasons:
+
* very few data indicate that contiguous subspecies ever become species {{Fact|date=June 2007}}
+
* geographically disjunct groups regarded as subspecies usually can be demonstrated to actually be distinct species {{Fact|date=June 2007}}
+
* subspecies had been recognized on the basis of only 2-5 [[phenotypic]] characters, which often were adaptations to local environments but which did not reflect the evolutionary differentiation of populations as a whole {{Fact|date=June 2007}}
+
* with the advent of molecular techniques used to get a better handle on genetic introgression (gene flow), the picture afforded by looking at genetic variation was often at odds with the phenotypic variation (as is the case with looking at genes versus percentage of epidermal [[melanin]] in human populations){{Fact|date=June 2007}}
+
These criticisms have coincided with the rise of [[cladistics]]
+
  
A [[clade]] is a taxonomic group of organisms consisting of a single common ancestor and all the descendants of that ancestor. Every creature produced by sexual reproduction has two immediate lineages, one maternal and one paternal.<ref>http://www.anthrosource.net/doi/abs/10.1525/an.2006.47.2.7?journalCode=an accessed June 2007</ref> Whereas [[Carolus Linnaeus]] established a taxonomy of living organisms based on anatomical similarities and differences, [[cladistics]] seeks to establish a taxonomy &mdash; the [[phylogenetic tree]] &mdash; based on genetic similarities and differences and tracing the process of acquisition of multiple characteristics by single organisms.  Some researchers have tried to clarify the idea of race by equating it to the biological idea of the [[clade]]:
+
According to [[Sewall Wright]], who was born in 1889, there is no question that human populations that have long inhabited separated parts of the world should, in general, be considered to be of different subspecies by the usual criterion that most individuals of such populations can be allocated correctly by inspection. It does not require a trained anthropologist to classify an array of Englishmen, West Africans, and Chinese with 100% accuracy by features, skin color, and type of hair in spite of so much variability within each of these groups that every individual can easily be distinguished from every other. However, it is customary to use the term race rather than subspecies for the major subdivisions of the human species as well as for minor ones.<ref>Wright, S. 1978. Evolution and the Genetics of Populations, Vol. 4, Variability Within and Among Natural Populations. Univ. Chicago Press, Chicago, Illinois. p. 438</ref>
  
[[Image:Human evolutionary tree.jpg|center|500px|thumb|<center>Human evolutionary tree</center>]]
+
Humans can be correctly assigned to races at much greater than 75% accuracy on the basis of morphological traits while [[chimpanzee]] subspecies are morphologically indistinct, and difficult or impossible to classify when raised in captivity.<ref>Stone, A.C., R. Griffiths, S. Zegura, M. Hammer. 2002. High levels of Y chromosome nucleotide diversity in the genus Pan. Proceedings of the National Academy of Sciences 99:43-48.</ref><ref>66. Kaessmann, H., Wiebe, V., Paabo, S. 1999. Extensive Nuclear DNA Sequence Diversity Among Chimpanzees. Science 286:1159-1162.</ref><ref>Wright. 1978. p. 439</ref>
{{clr}}
+
A [[phylogenetic tree]] like the one shown above is usually derived from [[DNA]] or [[protein]] [[DNA sequence|sequences]] from populations. Often [[mitochondrial DNA]] or [[Y-chromosomal Adam|Y chromosome]] sequences are used to study ancient human migration paths. These single-locus sources of DNA do not [[genetic recombination|recombine]] and are inherited from a single parent. Individuals from the various continental groups tend to be more similar to one another than to people from other continents, and tracing either mitochondrial DNA or non-recombinant Y-chromosome DNA explains how people in one place may be largely derived from people in some remote location. The tree is rooted in the common ancestor of [[chimpanzee]]s and humans, which is believed to have originated in [[Africa]]. Horizontal distance corresponds to two things:
+
  
#'''Genetic distance'''. Given below the diagram, the genetic difference between humans and chimpanzees is roughly 2%, or 20 times larger than the variation among modern humans.
+
On the other hand in practice subspecies are often defined by easily observable physical appearance, but there is not necessarily any evolutionary significance to these observed differences, so this form of classification is generally not accepted by evolutionary biologists.<ref name="Templeton"/><ref name="Keita"/>
#'''Temporal remoteness''' of the most recent common ancestor. Rough estimates are given above the diagram, in millions of years. The [[mitochondrial]] most recent common ancestor of modern humans lived roughly 200,000 years ago, latest common ancestors of humans and chimpanzees between four and seven million years ago.
+
  
Chimpanzees and humans belong to different [[genus|genera]], indicated in Blue. Formation of [[species]] and [[subspecies]] is also indicated, and the formation of "races" is indicated in the green rectangle to the right (note that only a very rough representation of human [[phylogeny]] is given, and the points made in the preceding section, insofar as they apply to an "African race", are understood here). Note that vertical distances are not meaningful in this representation.  
+
Because of the difficulty in classifying subspecies morphologically, many biologists began to reject the concept altogether, citing problems such as:<ref name="Keita"/>
 +
*Visible physical differences do not correlate with one another, leading to the possibility of different classifications for the same individual organisms.<ref name="Keita"/>
 +
*Parallel evolution can lead to the existence of the appearance of similarities between groups of organisms that are not part of the same species.<ref name="Keita"/>
 +
*The existence of isolated populations within previously designated subspecies.<ref name="Keita"/>
 +
*That the criteria for classification are arbitrary.<ref name="Keita"/>
  
[[Image:Neighbor-joining_Tree.svg|thumb|right|350px|This genetic distance map made in 2002 is an estimate of 18 world human groups by a [[neighbour-joining]] method based on 23 kinds of genetic information.<ref>Saitou. Kyushu Museum. 2002. February 2, 2007. [http://www.museum.kyushu-u.ac.jp/WAJIN/113.html]</ref>]]
+
====Subspecies as isolated differentiated populations====
 +
Genetic differences between populations of organisms can be determined using the [[fixation index]] of [[Sewall Wright]], which is often abbreviated to F<sub>ST</sub>. This statistic is used to compare differences between any two given populations. For example it is often stated that the fixation index for humans is about 0.15. This means that about 85% of the variation measured in the human population is within any population, and about 15% of the variation occurs between populations.<ref name="Templeton"/><ref name="Keita"/>
  
Most evolutionary scientists have rejected the identification of races with clades for two reasons. First, as Rachel Caspari (2003) argued, clades are by definition monophyletic groups (a taxon that includes ''all'' descendants of a given ancestor) since no groups currently regarded as races are monophyletic, none of those groups can  be clades.
+
Citing Smith, Templeton asserts that an F<sub>ST</sub> value of 0.25 or 0.30 between populations is a “standard criterion” for subspecies classification. However, Smith doesn't mention the concept of F<sub>ST</sub> in his paper, he is discussing variation in morphology and discusses the 75% rule. Templeton reported that [[white tailed deer]] have an F<sub>ST</sub> of about 60% and the [[grey wolf]] has an F<sub>ST</sub> approaching 90% for mtDNA. The F<sub>ST</sub> of grey wolves is 0.168 in autosomal loci, however.<ref>Wayne, R.K., Lehmann, N., Allard, M.W., Honeycutt, R.L. 1992. Mitochondrial DNA Variability of the Gray Wolf: Genetic Consequences of Population Decline and Habitat Fragmentation. Conservation Biology 6:559-569.</ref><ref>82. Roy, M.S., Gefen, E., Smith, D., Ostrander, E.A., Wayne, R.K. 1994. Patterns of Differentiation and Hybridization in North American Wolflike Canids, Revealed by Analysis of Microsatellite Loci. Molecular Biology and Evolution 11:553-570.</ref> On the other hand, in a paper reporting on the [[Phylogenetics|phylogenetic]] structure of the Leopard ''[[Panthera pardus]]'' species of Africa and Asia, Uphyrkina ''et al.'' found that 76.04% of mtDNA variation was distributed between leopard populations and 23.96% within populations, for [[microsatellite]] autosomal data, 0.358 (35.8%) of the variation was found between populations.<ref name="Uphyrkina">Olga Uphyrkina, Warren E. Johnson, Howard Quigley, Dale Miquelle, Laurie Marker, Mitchel Bush, Stephen J. O'Brien (2001) ''Phylogenetics, genome diversity and origin of modern leopard, ''Panthera pardus'''' ''Molecular Ecology'' '''10''' (11), 2617–2633. {{doi|10.1046/j.0962-1083.2001.01350.x}}</ref> This compares to an mtDNA F<sub>ST</sub> of between 0.24-0.27 (24-27%), and a genomic F<sub>ST</sub> of about 0.15 (15%) for humans,<ref name="tishkoff>Sarah A Tishkoff and Kenneth K Kidd (2004) ''Implications of biogeography of human populations for 'race' and medicine'' ''Nature Genetics'' '''36''', S21 - S27 (2004) {{doi|10.1038/ng1438}}</ref> and an F<sub>ST</sub> of 0.09-0.32 for autosomal microsatellite DNA between three Chimpanzee (''Pan troglodytes'') populations and of 0.51-0.68 between these three populations and the bonobo (''Pan paniscus'') populations.<ref name="chimp">Celine Becquet, Nick Patterson, Anne C Stone, Molly Przeworski, and David Reich (2007) ''Genetic Structure of Chimpanzee Populations. PLoS Genet.'' '''3'''(4): e66.{{doi|10.1371/journal.pgen.0030066}}.</ref> The following guidelines were suggested by [[Sewall Wright]] for interpreting F<sub>ST</sub>:
 +
<blockquote>
 +
“The range 0 to 0.05 may be considered as indicating little genetic differentiation.
 +
The range 0.05 to 0.15 indicates moderate genetic differentiation.
 +
The range 0.15 to 0.25 indicates great genetic differentiation.
 +
Values of FST above 0.25 indicate very great genetic differentiation.” </blockquote>
  
For anthropologists Lieberman and Jackson (1995), however, there are more profound methodological and conceptual problems with using cladistics to support concepts of race. They emphasize that "the molecular and biochemical proponents of this model explicitly use racial categories ''in their initial grouping of samples''". For example, the large and highly diverse macroethnic groups of East Indians, North Africans, and Europeans are presumptively grouped as Caucasians prior to the analysis of their DNA variation. This limits and skews interpretations, obscures other lineage relationships, deemphasizes the impact of more immediate clinal environmental factors on genomic diversity, and can cloud our understanding of the true patterns of affinity.
+
Wright found differences in F<sub>ST</sub> for various species from 0.023-0.501.<ref name="graves">Joseph L. Graves, (2006) ''[http://raceandgenomics.ssrc.org/Graves/ What We Know and What We Don’t Know: Human Genetic Variation and the Social Construction of Race]'' from ''[http://raceandgenomics.ssrc.org/ Race and Genomics]''</ref> For humans the F<sub>ST</sub> is usually given as 0.15, of this 15% that is distributed between populations about 3-6% is distributed between geographically close populations occupying the same continent and about 6-10% is distributed between more distant continental groups, these figures vary somewhat depending on the type of genetic systems used, but the general observation has been reproduced in numerous studies.<ref name="Lewontin">Lewontin, 2006</ref> This indicates that some of the between population variation for humans is found within any "race" and about 6-10% of variation is found between "races", giving an F<sub>ST</sub> of 0.06-0.1 for human "races".<ref name="duster"/>
They argue that however significant the empirical research, these studies use the term race in conceptually imprecise and careless ways.  They suggest that the authors of these studies find support for racial distinctions only because they began by assuming the validity of race.
+
<blockquote>For empirical reasons we prefer to place emphasis on clinal variation, which recognizes the existence of adaptive human hereditary variation and simultaneously stresses that such variation is not found in packages that can be labeled ''races''.</blockquote>{{Fact|date=June 2007}}
+
Indeed, recent research reports evidence for smooth, clinal genetic variation even in regions previously considered racially homogeneous, with the apparent gaps turning out to be artifacts of sampling techniques (Serre & Pääbo 2004). These scientists do not dispute the importance of cladistic research, only its retention of the word race, when reference to populations and clinal gradations are more than adequate to describe the results.
+
  
===Race and Population Genetics: "population" and "cline" as alternatives===
+
It has also been noted that:
 +
*"First, compared with many other mammalian species, humans are genetically less diverse... For example, the chimpanzee subspecies living just in central and western Africa have higher levels of diversity than do humans (Ebersberger et al. 2002; Yu et al. 2003; Fischer et al. 2004)." Human variation is also distributed in an unusual and not easily understood fashion compared to other mammalian species: "The details of this distribution are impossible to describe succinctly because of the difficulty of defining a 'population,' the clinal nature of variation, and heterogeneity across the genome (Long and Kittles 2003).... This distribution of genetic variation differs from the pattern seen in many other mammalian species, for which existing data suggest greater differentiation between groups (Templeton 1998; Kittles and Weiss 2003)."<ref name="REGWG">''[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275602 The Use of Racial, Ethnic, and Ancestral Categories in Human Genetics Research]'' by Race, Ethnicity, and Genetics Working Group. ''Am J Hum Genet.'' 2005 '''77'''(4): 519–532.</ref>
 +
*"Since the 1980s, there have been indications that the genetic diversity of humans is low compared with that of many other species. This has been interpreted to mean that humans are a relatively young species, so populations have had relatively little time to differentiate from one another. For example, 2 randomly chosen humans differ at ~1 in 1,000 nucleotide pairs, whereas two chimpanzees differ at ~1 in 500 nucleotide pairs.<ref>''[http://www.fiu.edu/~biology/pcb5665/RACEgen.pdf DECONSTRUCTING THE RELATIONSHIP BETWEEN GENETICS AND RACE]'' Michael Bamshad, Stephen Wooding, Benjamin A. Salisbury and J. Claiborne Stephens. ''Nature Genetics'' (2004) '''5''':598-609</ref>
 +
*"'Race' is a legitimate taxonomic concept that works for chimpanzees but does not apply to humans (at this time). The nonexistence of 'races' or subspecies in modern humans does not preclude substantial genetic variation that may be localized to regions or populations....The DNA of an unknown individual from one of the sampled populations would probably be correctly linked to a population. Because this identification is possible does not mean that there is a level of differentiation equal to 'races'. The genetics of ''Homo sapiens'' shows gradients of differentiation."<ref>[http://www.nature.com/ng/journal/v36/n11s/full/ng1455.html Conceptualizing human variation]'' by S O Y Keita, 2, R A Kittles1, C D M Royal, G E Bonney, P Furbert-Harris, G M Dunston & C N Rotimi. ''Nature Genetics''  '''36''', S17 - S20 (2004)</ref>
 +
*"Humans are ~98.8% similar to chimpanzees at the nucleotide level and are considerably more similar to each other, differing on average at only 1 of every 500−1,000 nucleotides between chromosomes. This degree of diversity is less than what typically exists among chimpanzees.<ref>''[http://www.nature.com/ng/journal/v36/n11s/full/ng1438.html Implications of biogeography of human populations for 'race' and medicine]'' by Sarah A Tishkoff & Kenneth K Kidd. ''Nature Genetics''  '''36''', S21 - S27 (2004)</ref>
 +
*"The average proportion of nucleotide differences between a randomly chosen pair of humans (i.e., average nucleotide diversity, or Ï€) is consistently estimated to lie between 1 in 1,000 and 1 in 1,500. This proportion is low compared with those of many other species, from fruit flies to chimpanzees...."<ref>''[http://www.nature.com/ng/journal/v36/n11s/full/ng1435.html Genetic variation, classification and 'race']'' by Lynn B Jorde & Stephen P Wooding. ''Nature Genetics'  '''36''', S28 - S33 (2004)</ref>
  
At the beginning of the 20th century, anthropologists questioned, and eventually abandoned, the claim that biologically distinct races are isomorphic with distinct linguistic, cultural, and social groups. Thereafter, the rise of [[population genetics]] led some mainstream evolutionary scientists in [[anthropology]] and [[biology]] to question the very validity of race as scientific concept describing an objectively real phenomenon. Those who came to reject the validity of the concept race did so for four reasons: empirical, definitional, the availability of alternative concepts, and ethical (Lieberman and Byrne 1993).   
+
=== Population genetics: population and cline ===
 +
At the beginning of the 20th century, anthropologists questioned, and eventually abandoned, the claim that biologically distinct races are isomorphic with distinct linguistic, cultural, and social groups. Shortly thereafter, the rise of [[population genetics]] provided scientists with a new understanding of the sources of phenotypic variation. This new science has led many mainstream evolutionary scientists in [[anthropology]] and [[biology]] to question the very validity of race as a scientific concept describing an objectively real phenomenon. Those who came to reject the validity of the concept of race did so for four reasons: empirical, definitional, the availability of alternative concepts, and ethical (Lieberman and Byrne 1993).   
  
 
The first to challenge the concept of race on empirical grounds were [[anthropology|anthropologists]] [[Franz Boas]], who demonstrated phenotypic plasticity due to environmental factors (Boas 1912), and [[Ashley Montagu]] (1941, 1942), who relied on evidence from genetics.  [[Zoology|Zoologists]] Edward O. Wilson and W. Brown then challenged the concept from the perspective of general animal systematics, and further rejected the claim that "races" were equivalent to "subspecies" (Wilson and Brown 1953).
 
The first to challenge the concept of race on empirical grounds were [[anthropology|anthropologists]] [[Franz Boas]], who demonstrated phenotypic plasticity due to environmental factors (Boas 1912), and [[Ashley Montagu]] (1941, 1942), who relied on evidence from genetics.  [[Zoology|Zoologists]] Edward O. Wilson and W. Brown then challenged the concept from the perspective of general animal systematics, and further rejected the claim that "races" were equivalent to "subspecies" (Wilson and Brown 1953).
  
One of the crucial innovations in reconceptualizing genotypic and phenotypic variation was anthropologist C. Loring Brace's observation that such variations, insofar as it is affected by [[natural selection]], [[migration]], or [[genetic drift]], are distributed along geographic gradations; these gradations are called "[[cline (population genetics)|cline]]s" (Brace 1964). This point called attention to a problem common to phenotypic-based descriptions of races (for example, those based on hair texture and skin color): they ignore a host of other similarities and difference (for example, blood type) that do not correlate highly with the markers for race. Thus, anthropologist Frank Livingstone's conclusion that, since clines cross racial boundaries, "there are no races, only clines" (Livingstone 1962: 279).  In 1964, biologists Paul Ehrlich and Holm pointed out cases where two or more clines are distributed discordantly&mdash;for example, melanin is distributed in a decreasing pattern from the equator north and south; frequencies for the haplotype for beta-S hemoglobin, on the other hand, radiate out of specific geographical points in Africa (Ehrlich and Holm 1964).  As anthropologists Leonard Lieberman and Fatimah Linda Jackson observe, "Discordant patterns of heterogeneity falsify any description of a population as if it were genotypically or even phenotypically homogeneous" (Lieverman and Jackson 1995).
+
====Clines====
 +
One of the crucial innovations in reconceptualizing genotypic and phenotypic variation was anthropologist C. Loring Brace's observation that such variations, insofar as it is affected by [[natural selection]], migration, or [[genetic drift]], are distributed along geographic gradations or [[wiktionary:cline|clines]] (Brace 1964). This point called attention to a problem common to phenotype-based descriptions of races (for example, those based on hair texture and skin color): they ignore a host of other similarities and differences (for example, blood type) that do not correlate highly with the markers for race. Thus, anthropologist Frank Livingstone's conclusion that, since clines cross racial boundaries, "there are no races, only clines" (Livingstone 1962: 279).   
  
Finally, geneticist [[Richard Lewontin]], observing that 85 percent of human variation occurs within populations, and not among populations, argued that neither "race" nor "subspecies" were appropriate or useful ways to describe populations (Lewontin 1973). Some researchers report the variation between racial groups (measured by [[Sewall Wright|Sewall Wright's]] population structure statistic F<sub>ST</sub>) accounts for as little as 5% of human genetic variation<sup>2</sup>.
+
In a response to Livingston, [[Theodore Dobzhansky]] argued that when talking about "race" one must be attentive to how the term is being used: "I agree with Dr. Livingston that if races have to be 'discrete units,' then there are no races, and if 'race' is used as an 'explanation' of the human variability, rather than vice versa, then the explanation is invalid."  He further argued that one could use the term race if one distinguished between "race differences" and "the race concept." The former refers to any distinction in gene frequencies between populations; the latter is "a matter of judgment."  He further observed that even when there is clinal variation, "Race differences are objectively ascertainable biological phenomena .... but it does not follow that racially distinct populations must be given racial (or subspecific) labels."<ref>Theodosious Dobzhansky "Comment" in ''Current Anthropology'' 3(3): 279-280</ref> In short, Livingston and Dobzhansky agree that there are genetic differences among human beings; they also agree that the use of the race concept to classify people, and how the race concept is used, is a matter of social convention. They differ on whether the race concept remains a meaningful and useful social convention.
  
[[A. W. F. Edwards]] claimed in 2003 that such conclusions are unwarranted because the argument ignores the fact that most of the information that distinguishes populations is hidden in the [[correlation structure]] of the data and not simply in the variation of the individual factors.<ref>[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12879450&dopt=Abstract "Human genetic diversity: Lewontin's fallacy."], Edwards AW., Gonville and Caius College, Cambridge, in ''PubMed'', 2003 Aug;25(8):798-801.</ref>  While if true it would make Lewontin's argument unwarranted, Edward's paper does not address the existence or absence of human races. (See [[Lewontin's Fallacy]].)
+
In 1964, biologists Paul Ehrlich and Holm pointed out cases where two or more clines are distributed discordantly&mdash;for example, melanin is distributed in a decreasing pattern from the equator north and south; frequencies for the haplotype for beta-S hemoglobin, on the other hand, radiate out of specific geographical points in Africa (Ehrlich and Holm 1964). As anthropologists Leonard Lieberman and Fatimah Linda Jackson observe, "Discordant patterns of heterogeneity falsify any description of a population as if it were genotypically or even phenotypically homogeneous" (Lieverman and Jackson 1995).
  
Also, it has been argued that the calculation of within group and between group diversity has violated certain expectations regarding human genetic variation. Calculation of this variation is known as F<sub>ST</sub> and Long and Kittles (2003) have questioned the validity of this value as a reproducible statistic. The first problem is that effective population size is assumed to be equal in all instances of the calculation of F<sub>ST</sub>, but if population sizes vary, then allele relatedness among alleles will also vary. The second problem is that F<sub>ST</sub> calculation has assumed that each population is evolutionarily independent. Calculation of F<sub>ST</sub> can therefore only be made for the set of populations being observed, and generalisations from specific data sets cannot be applied to the species as a whole.<ref name = "long">Long and Kittles (2003). [http://muse.jhu.edu/journals/human_biology/v075/75.4long.pdf ''Human genetic variation and the nonexistence of human races''] (PDF): '''Human Biology, V. 75, no. 4, pp. 449-471.</ref>
+
Patterns such as those seen in human physical and genetic variation as described above, have led to the consequence that the number and geographic location of any described races is highly dependent on the importance attributed to, and quantity of, the traits considered. For example if only skin colour and a "two race" system of classification were used, then one might classify [[Indigenous Australians]] in the same "race" as [[African people]], and [[European people]] in the same "race" as [[East Asian]] people, but biologists and anthropologists would dispute that these classification has any scientific validity. On the other hand the greater the number of traits (or [[allele]]s) considered, the more subdivisions of humanity are detected, due to the fact that traits and gene frequencies do not always correspond to the same geographical location, or as Ossario and Duster (2005) put it:{{quotation|Anthropologists long ago discovered that humans' physical traits vary gradually, with groups that are close geographic neighbors being more similar than groups that are geographically separated. This pattern of variation, known as clinal variation, is also observed for many alleles that vary from one human group to another. Another observation is that traits or alleles that vary from one group to another do not vary at the same rate. This pattern is referred to as nonconcordant variation. Because the variation of physical traits is clinal and nonconcordant, anthropologists of the late 19th and early 20th centuries discovered that the more traits and the more human groups they measured, the fewer discrete differences they observed among races and the more categories they had to create to classify human beings. The number of races observed expanded to the 30s and 50s, and eventually anthropologists concluded that there were no discrete races (Marks, 2002). Twentieth and 21st century biomedical researchers have discovered this same feature when evaluating human variation at the level of alleles and allele frequencies. Nature has not created four or five distinct, nonoverlapping genetic groups of people.<ref name="duster">Pilar Ossorio and Troy Duster (2006) ''Race and Genetics Controversies in Biomedical, Behavioral, and Forensic Sciences'' ''American Psychologist'' '''60''' 115–128 {{doi|10.1037/0003-066X.60.1.115}}</ref>}}
  
Long and Kittles tested four models for determining F<sub>ST</sub> and concluded that the model used most often for estimating this statistic is the simplest and worst fitting. Their best fit model was still a poor fit for the observed genetic variation, and calculation of F<sub>ST</sub> for this model can only be made on a population by population basis. They conclude that African populations have the highest level of genetic diversity, with diversity much reduced in populations outside of Africa. They postulate that if an extra-terrestrial alien life form killed the entire human species, but selected a single population to preserve, the choice of population to keep would greatly effect the level of diversity represented. If an African population were selected then no diversity would be lost, whereas nearly a third of genetic diversity would be lost if a Papuan New Guinea population were chosen. Indeed within population genetic diversity in African populations has been shown to be greater than between population genetic diversity for Asians and Europeans. They conclude that their findings are consistent with the [[American Association of Physical Anthropologists]] 1996 statement on race
+
====Populations====
{{quotation|that all human populations derive from a common ancestral group, that there is great genetic diversity within all human populations, and that the geographic pattern of variation is complex and presents no major discontinuity.}}
+
Population geneticists have debated as to whether the concept of population can provide a basis for a new conception of race. In order to do this a working definition of population must be found. Surprisingly there is no generally accepted concept of population that biologists use. It has been pointed out that the concept of population is central to ecology, evolutionary biology and conservation biology, but also that most definitions of population rely on qualitative descriptions such as "a group of organisms of the same species occupying a particular space at a particular time"<ref name="waples">''What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity.'' by ROBIN S. WAPLES and OSCAR GAGGIOTTI. ''Molecular Ecology'' (2006) '''15''', 1419–1439. {{doi|10.1111/j.1365-294X.2006.02890.x}}</ref> Waples and Gaggiotti identify two broad types of definitions for populations, those that fall into an ''ecological paradigm'' and those that fall into an ''evolutionary paradigm''. Examples such definitions are:
They also state that none of the race concepts they discuss are compatible with their results.<ref name="long"/>
+
*''Ecological paradigm'': A group of individuals of the same species that co-occur in space and time and have an opportunity to interact with each other.
 +
*''Evolutionary paradigm'': A group of individuals of the same species living in close enough proximity that any member of the group can potentially mate with any other member.<ref name="waples"/>
  
These empirical challenges to the concept of race forced evolutionary sciences to reconsider their definition of race. Mid-century, anthropologist William Boyd defined race as:
+
[[Richard Lewontin]], claiming that 85 percent of human variation occurs within populations, and not among populations, argued that neither "race" nor "subspecies" were appropriate or useful ways to describe populations (Lewontin 1973). Nevertheless, barriers—which may be cultural or physical— between populations can limit gene flow and increase genetic differences. Recent work by population geneticists conducting research in Europe suggests that ethnic identity can be a barrier to gene flow.<ref>Koertvelyessy, TA and MT Nettleship 1996 Ethnicity and mating structure in Southwestern Hungary. Rivista di Antropologia (Roma) 74:45-53</ref><ref>Koertvelyessy, T 1995 Etnicity, isonymic relationships, and biological distance in Northeastern Hungary. Homo 46/1:1-9.</ref><ref>Pettener. D 1990 Temporal trends in marital structure and isonymy in S. Paolo Albanese, Italy. Human Biology 6:837-851.</ref><ref>Biondi, G, P Raspe, GW Lasker, and GGN Mascie-Taylor 1990 Relationships estimated by isonymy among the Italo-Greco villages of southern Italy. Human Biology 62:649-663.</ref>  Others, such as [[Ernst Mayr]], have argued for a notion of "geographic race" [http://www.goodrumj.com/Mayr.html]. Some researchers report the variation between racial groups (measured by [[Sewall Wright|Sewall Wright's]] population structure statistic F<sub>ST</sub>) accounts for as little as 5% of human genetic variation². [[Sewall Wright]] himself commented that if differences this large were seen in another species, they would be called subspecies.<ref>Wright S. 1978. Evolution and the Genetics of Populations, Vol. 4, Variability Within and Among Natural Populations. Chicago, II: Univ. Chicago Press</ref>  In 2003 [[A. W. F. Edwards]] argued that cluster analysis supersedes Lewontin's arguments (see below).
{{quotation|A population which differs significantly from other populations in regard to the frequency of one or more of the genes it possesses. It is an arbitrary matter which, and how many, gene loci we choose to consider as a significant "constellation" (Boyd 1950).}}
+
 
 +
These empirical challenges to the concept of race forced evolutionary sciences to reconsider their definition of race. Mid-century, anthropologist William Boyd defined race as:
 +
:A population which differs significantly from other populations in regard to the frequency of one or more of the genes it possesses. It is an arbitrary matter which, and how many, gene loci we choose to consider as a significant "constellation" (Boyd 1950).
 
Lieberman and Jackson (1994) have pointed out that "the weakness of this statement is that if one gene can distinguish races then the number of races is as numerous as the number of human couples reproducing."  Moreover, anthropologist Stephen Molnar has suggested that the discordance of clines inevitably results in a multiplication of races that renders the concept itself useless (Molnar 1992).
 
Lieberman and Jackson (1994) have pointed out that "the weakness of this statement is that if one gene can distinguish races then the number of races is as numerous as the number of human couples reproducing."  Moreover, anthropologist Stephen Molnar has suggested that the discordance of clines inevitably results in a multiplication of races that renders the concept itself useless (Molnar 1992).
  
[[Image:Map of skin hue equi3.png|right|thumb|500px|[[Human skin color]] map. Data for native populations collected by R. Biasutti prior to 1940]]
+
<!-- [[Image:Map of skin hue equi3.png|right|thumb|500px|[[Human skin color]] map. Data for native populations collected by R. Biasutti prior to 1940]] ***This map is discredited, plus it's ugly. I can make a better looking map, if I had the correct data [[User:Jeeny]] ***-->
  
The distribution of many physical traits resembles the distribution of genetic variation within and between human populations (American Association of Physical Anthropologists 1996; Keita and Kittles 1997). For example, ∼90% of the variation in human head shapes occurs within every human group, and ∼10% separates groups, with a greater variability of head shape among individuals with recent African ancestors (Relethford 2002).
+
The distribution of many physical traits resembles the distribution of genetic variation within and between human populations (American Association of Physical Anthropologists 1996; Keita and Kittles 1997). For example, ~90% of the variation in human head shapes occurs within every human group, and ~10% separates groups, with a greater variability of head shape among individuals with recent African ancestors (Relethford 2002).
  
A prominent exception to the common distribution of physical characteristics within and among groups is skin color. Approximately 10% of the variance in skin color occurs within groups, and ~90% occurs between groups (Relethford 2002). This distribution of skin color and its geographic patterning—with people whose ancestors lived predominantly near the equator having darker skin than those with ancestors who lived predominantly in higher latitudes—indicates that this attribute has been under strong selective pressure. Darker skin appears to be strongly selected for in equatorial regions to prevent sunburn, skin cancer, the photolysis of folate, and damage to sweat glands (Sturm ''et al.'' 2001; Rees 2003). A leading hypothesis for the selection of lighter skin in higher latitudes is that it enables the body to form greater amounts of vitamin D, which helps prevent rickets (Jablonski 2004). Evidence for this hypothesis includes the finding that a substantial portion of the differences of skin color between Europeans and Africans resides in a single gene, [[SLC24A5]] the threonine-111 allele of which was found in 98.7 to 100% among several European samples, while the alanine-111 form was found in 93 to 100% of samples of Africans, East Asians and Indigenous Americans (Lamason ''et al.'' 2005). However, the vitamin D hypothesis is not universally accepted (Aoki 2002), and lighter skin in high latitudes may correspond simply to an absence of selection for dark skin (Harding ''et al.'' 2000). [[Melanin]], which serves as the pigment, is located in the [[Epidermis (skin)|epidermis]] of the skin, and is based on [[hereditary]] [[gene expression]].
+
=== Molecular genetics: lineages and clusters ===
  
Because skin color has been under strong selective pressure, similar skin colors can result from convergent adaptation rather than from genetic relatedness. Sub-Saharan Africans, tribal populations from southern India, and Indigenous Australians have similar skin pigmentation, but genetically they are no more similar than are other widely separated groups.{{Fact|date=June 2007}} Furthermore, in some parts of the world in which people from different regions have mixed extensively, the connection between skin color and ancestry has been substantially weakened (Parra ''et al.'' 2004). In Brazil, for example, skin color is not closely associated with the percentage of recent African ancestors a person has, as estimated from an analysis of genetic variants differing in frequency among continent groups (Parra ''et al.'' 2003).
+
With the recent availability of large amounts of human genetic data from many geographically distant human groups scientists have again started to investigate the relationships between people from various parts of the world. One method is to investigate DNA molecules that are passed down from mother to child (mtDNA) or from father to son (Y chromosomes), these form molecular lineages and can be informative regarding prehistoric population migrations. Alternatively autosomal alleles are investigated in an attempt to understand how much genetic material groups of people share. This work has led to a debate amongst geneticists, molecular anthropologists and medical doctors as to the validity of conceps such as "race". Some researchers insist that classifying people into groups based on ancestry may be important from medical and social policy points of view, and claim to be able to do so accurately. Others claim that individuals from different groups share far too much of their genetic material for group membership to have any medical implications. This has reignited the scientific debate over the validity of human classification and concepts of "race".
  
Considerable speculation has surrounded the possible adaptive value of other physical features characteristic of groups, such as the constellation of facial features observed in many eastern and northeastern Asians (Guthrie 1996). However, any given physical characteristic generally is found in multiple groups (Lahr 1996), and demonstrating that environmental selective pressures shaped specific physical features proves to be difficult, since such features may have resulted from sexual selection for individuals with certain appearances or from genetic drift (Roseman 2004).
+
====Molecular lineages, Y chromosomes and mitochondrial DNA====
  
In the face of these issues, some evolutionary scientists have simply abandoned the concept of race in favor of "[[Population genetics|population]]."  What distinguishes population from previous groupings of humans by race is that it refers to a breeding population (essential to genetic calculations) and not to a biological [[taxon]].  Other evolutionary scientists have abandoned the concept of race in favor of [[cline (population genetics)|cline]] (meaning, how the frequency of a trait changes along a geographic gradient).  (The concepts of population and cline are not, however, mutually exclusive and both are used by many evolutionary scientists.)
+
[[Mitochondria]] are small [[organelle]]s that lie in the [[cytoplasm]] of [[Eukaryote|eucaryotic cells]], such as those of humans. Their primary purpose is to provide energy to the cell. Mitochondria are thought to be the vestigial remains of [[symbiote|symbiotic]] [[bacteria]] that were once free living. One indication that mitochondria were once free living is that they contain a relatively small circular segment of [[DNA]], called [[mitochondrial DNA]] (mtDNA). The overwhelming majority of a human's DNA is contained in [[chromosome]]s in the [[Cell nucleus|nucleus]] of the cell, but mtDNA is an exception. An individual inherits their cytoplasm and the organelles it contains exclusively from their mother, as these are derived from the [[ovum]] (egg cell), [[sperm]] only carry chromosomal DNA due to the necessity of maintaining [[motility]]. When a [[mutation]] arises in mtDNA molecule the mutation is therefore passed in a direct female line of descent. These mutations are derived from copying mistakes, when the DNA is copied it is possible that a single mistake occurs in the [[DNA sequence]], these single mistakes are called [[single nucleotide polymorphism]]s (SNPs).
  
According to Jonathan Marks,
+
Human [[Y chromosome]]s are male specific [[XY sex-determination system|sex chromosomes]], any human that possesses a Y chromosome will be [[Morphology (biology)|morphologically]] male. Y chromosomes are therefore passed from father to son, although Y chromosomes are situated in the cell nucleus, they only [[Genetic recombination|recombine]] with the X chromosome at the [[Y chromosome#Recombination inhibition|ends of the Y chromosome]], the vast majority of the Y chromosome (95%) does not recombine. Therefore, as with mtDNA, when mutations (SNPs) arise in the Y chromosome they are passed on directly from father to son in a direct male line of descent.
:By the 1970s, it had become clear that (1)most human differences were cultural; (2) what was not cultural was principally polymorphic - that is to say, found in diverse groups of people at different frequencies; (3) what was not cultural or polymorphic was principlally clinal - that is to say, gradually variable over geography; and (4) what was left - the component of human diversity that was not cultural, polymorphic, or clinal - was very small.
+
  
:A consensus consequently developed among anthropologists and geneticisms that race as the previous generation had known it - as largely discrete, geographically distinct, gene pools - did not exist. <ref> Marks, Jonathan (2007) "Grand Anthropological Themes" in ''American Ethnologist'' 34(2): 234, cf. Marks, Jonathan (1995) ''Human Biodiversity: Genes, Race, and History''. New York: Aldine de Gruyter</ref>
+
[[Image:Molecular lineage.png|thumb|300px|right| All of these molecules are part of the ancestral haplogroup, but at some point in the past a mutation occurred in the ancestral molecule, mutation A, which produced a new lineage, this is haplogroup A and is defined by mutation A, at some more recent point in the past a new mutation, mutation B, occurred in a person carrying haplogroup A, mutation B defined haplogroup B, haplogroup B is a subgroup, or subclade of haplogroup A, both haplogrups A and B are subclades of the ancestral haplogroup.]] The Y chromosome and mtDNA therefore share certain properties. Other chromosomes, [[autosomes]] and [[X chromosomes]] in women, share their genetic material (called [[Chromosomal crossover|crossing over]] leading to recombination) during [[meiosis]] (a special type of [[cell division]] that occurs for the purposes of [[sexual reproduction]]). Effectively this means that the genetic material from these chromosomes gets mixed up in every generation, and so any new mutations are passed down randomly from parents to offspring. The special feature that both Y chromosomes and mtDNA display is that mutations can accrue along a certain segment of both molecules and these mutations remain fixed in place on the DNA. Furthermore the historical sequence of these mutations can also be inferred. For example, if a set of ten Y chromosomes (derived from ten different men) contains a mutation, A, but only five of these chromosomes contain a second mutation, B, it must be the case that mutation B occurred after mutation A. Furthermore all ten men who carry the chromosome with mutation A are the direct male line descendants of the same man who was the first person to carry this mutation. The first man to carry mutation B was also a direct male line descendant of this man, but is also the direct male line ancestor of all men carrying mutation B. Series of mutations such as this form molecular lineages. Furthermore each mutation defines a set of specific Y chromosomes called a haplogroup. All men carrying mutation A form a single haplogroup, all men carrying mutation B are part of this haplogroup, but mutation B also defines a more recent haplogroup (which is a subgroup or subclade) of its own which men carrying only mutation A do not belong to. Both mtDNA and Y chromosomes are grouped into lineages and haplogroups, these are often presented as tree like diagrams.
  
In the face of this rejection of race by evolutionary scientists, many social scientists have replaced the word race with the word "[[Ethnic group|ethnicity]]" to refer to self-identifying groups based on beliefs concerning shared culture and history. Alongside empirical and conceptual problems with "race," following the [[Second World War]], evolutionary and social scientists were acutely aware of how beliefs about race had been used to justify discrimination, apartheid, slavery, and genocide. This questioning gained momentum in the [[1960s]] during the U.S. [[civil rights movement]] and the emergence of numerous anti-colonial movements worldwide.  They thus came to understood that these justifications, even when expressed in language that sought to appear objective, were [[Social construction|social constructs]].<ref name="Gordon64">Gordon 1964</ref>
+
Groundbreaking work by molecular biologists such as Cann ''et al.'' (1987)<ref>Rebecca L. Cann, Mark Stoneking, Allan C. Wilson (1987) ''[http://artsci.wustl.edu/~landc/html/cann/ Mitochondrial DNA and human evolution]'' in ''Nature'' '''325''': 31-36) </ref> on mtDNA produced three interesting observations relevant to race and human evolution.
  
===Race and models of human evolution===
+
Firstly, by estimating the rate at which mutations occur in mtDNA Cann ''et al.'' were able to estimate the age of the common ancestral mtDNA type: "the common ancestral mtDNA (type a) links mtDNA types that have diverged by an average of nearly 0.57%. Assuming a rate of 2%-4% per million years, this implies that the common ancestor of all surviving mtDNA types existed 140,000-290,000 years ago." This observation is robust, and this common direct female line ancestor (or mitochondrial [[most recent common ancestor]] (mtMRCA)) of all extant humans has become known as [[mitochondrial eve]]. The observation that the mtMRCA is the direct matrilineal ancestor of all living humans should not be interpreted as meaning that either she was the first anatomically modern human, nor that there were no other female humans living concurrently with her. A more reasonable explanation is that other women who lived at the same time as mtMRCA did indeed reproduce and pass their genes down to living humans, but that their mitochondrial lineages have been lost over time, probably due to random events such as producing only male children. It is impossible to know to what extent these non-extant lineages have been lost or how much they differed from the mtDNA of our mtMRCA. Cann ''et al.''  
:''see also [[single-origin hypothesis]], [[multiregional hypothesis]].''
+
  
In a recent article, Leonard Lieberman and Fatimah Jackson have called attention to the fact that although the concepts of cline, population, and ethnocity, as well as humanitarian and political concerns, have led many scientists away from the notion of race, a recent survey showed that physical anthropologists were evenly divided as to whether race is a valid biological concept.  Noting that among physical anthropologists the vast majority of opposition to the race concept comes from population geneticists, any new support for a biological concept of race will likely come from another source, namely, the study of human evolution. They therefore ask what, if any, implications current models of human evolution may have for any biological conception of race. <ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 232-234</ref>
+
Secondly Cann ''et al.'' postulate that their work supports an African origin for modern human mtDNA: "We infer from the tree of minimum length... that Africa is a likely source of the human mitochondrial gene pool. This inference comes from the observation that one of the two primary branches leads exclusively to African mtDNAs... while the second primary branch also leads to African mtDNAs... By postulating that the common ancestral mtDNA (type a in Fig. 3) was African, we minimize the number of intercontinental migrations needed to account for the geographic distribution of mtDNA types."
  
Today all [[humans]] are classified as belonging to the species ''Homo sapiens sapiens.''  However, this is not the first species of hominids: the first species of genus ''Homo'', ''Homo habilis'' evolved in East Africa at least 2 million years ago, and members of this species populated different parts of Africa in a relatively short time. ''Homo erectus'' evolved more than 1.8 million years ago, and by 1.5 million years ago had spread throughout the Old World. Virtualy all physical anthropologists agree that ''Homo sapiens'' evolved out of ''Homo erectus.''  Anthropologists have been divided as to whether ''Homo sapiens'' evolved independently (and more or less simultaneously) out of different populations of ''H. erectus'' in different parts of the world (called the Multiregional Model, or the Regional Continuity Model), or evolved only in East Africa, and then migrated out of Africa and replaced ''H. erectus'' populations throughout the Old World (called the Out of Africa Model or the Complete Replacement Model). Anthropologists contine to debate both possibilities, although there is considerably more support for the Out of Africa Model.
+
Thirdly the study shows that mtDNA types (haplogroups) do not cluster by geography, ethnicity or race, implying multiple female lineages were involved in founding modern human populations, with many closely related lineages spread geographically and many populations containing distantly related lineages: "The second implication of the tree (Fig. 3) -that each non-African population has multiple origins-can be illustrated most simply with the New Guineans. Take, as an example, mtDNA type 49, a lineage whose nearest relative is not in New Guinea, but in Asia (type 50). Asian lineage 50 is closer genealogically to this New Guinea lineage than to other Asian mtDNA lineages. Six other lineages lead exclusively to New Guinean mtDNAs, each originating at a different place in the tree (types 12, 13, 26-29, 65, 95 and 127-134 in Fig. 3). This small region of New Guinea (mainly the Eastern Highlands Province) thus seems to have been colonised by at least seven maternal lineages (Tables 2 and 3). In the same way, we calculate the minimum numbers of female lineages that colonised Australia, Asia and Europe (Tables 2 and 3). Each estimate is based on the number of region-specific clusters in the tree (Fig. 3, Tables 2 and 3). These numbers, ranging from 15 to 36 (Tables 2 and 3), will probably rise as more types of human mtDNA are discovered."
  
====The multiregional model====
+
The Y chromosome is much larger than mtDNA, and is relatively homogeneous, therefore it has taken much longer to find distinct lineages and to analyse them. Conversely, because the Y chromosome is so large by comparison it can hold a great deal more genetic information. With regard to the three observations made by Cann ''et al.'' concerning mtDNA, Y chromosome studies show similar patterns. The estimate for the age of the ancestral Y chromosome for all extant Y chromosomes is given at about 70,000 years ago and is also placed in Africa, this individual is sometimes referred to as [[Y chromosome Adam]]. The difference in dates between Y chromosome Adam and mitochondrial Eve is usually attributed to a higher extinction rate for Y chromosomes due to greater differential reproductive success between individual men, that means that a small number of very successful men may produce a great many children, while a larger number of less successful men will produce far less children. Keita ''et al.'' (2004) say, with reference to Y chromosome and mtDNA and concepts of race:{{quotation|Y-chromosome and mitochondrial DNA genealogies are especially interesting because they demonstrate the lack of concordance of lineages with morphology and facilitate a phylogenetic analysis. Individuals with the same morphology do not necessarily cluster with each other by lineage, and a given lineage does not include only individuals with the same trait complex (or 'racial type'). Y-chromosome DNA from Africa alone suffices to make this point. Africa contains populations whose members have a range of external phenotypes. This variation has usually been described in terms of 'race' (Caucasoids, Pygmoids, Congoids, Khoisanoids). But the Y-chromosome clade defined by the PN2 transition (PN2/M35, PN2/M2) [see [[Haplogroup E3b (Y-DNA)|haplogroup E3b]] and [[Haplogroup E3a (Y-DNA)|Haplogroup E3a]]] shatters the boundaries of phenotypically defined races and true breeding populations across a great geographical expanse21. African peoples with a range of skin colors, hair forms and physiognomies have substantial percentages of males whose Y chromosomes form closely related clades with each other, but not with others who are phenotypically similar. The individuals in the morphologically or geographically defined 'races' are not characterized by 'private' distinct lineages restricted to each of them.<ref>[http://www.nature.com/ng/journal/v36/n11s/full/ng1455.html Conceptualizing human variation]'' (2004) by S O Y Keita, R A Kittles1, C D M Royal, G E Bonney, P Furbert-Harris, G M Dunston & C N Rotimi in Nature Genetics  '''36''', S17 - S20</ref>}}
{{main|Multiregional hypothesis}}
+
The multi-regional hypothesis consists of several models of human evolution that all posit that the human races evolved from separate populations of ''H. erectus'' over the past million years. Carleton Coon, an early advocate of this model, suggested that the independent evolution of ''H. sapiens'' in different parts of the world accounts for the existence of geographically and genetically distinct races - in short, that multiregional evolution was tantamount to multiracial evolution, the simultaneous but independent evolution of different races <ref>Carleton Coon (1962) ''The Origins of Race''</ref>  Current advocates of this model, primarily Milford Wolpof and his associates, have argued that the simultaneous evolution of ''H. sapiens'' in different parts of Europe and Asia would have been possible only if there was a degree of gene flow between archaic populations, and have rejected Coon's idea of multiracial evolution. <ref>Thorne, Alan, and Milford Wolpoff (1992) "The Multiregional Evolution of humans" in ''Scientific American, April 76-93; Smith, Fred and Frank Spencer, eds (1984) ''The Origin of Modern Humans''</ref> Frayer et al. (1993) cite as evidence anatomical continuity in the fossil record in South Central Europe (Smith 1982), East Asia and Australia (Wolpoff 1993) (anatomical affinity is taken to suggest genetic affinity). They argue that very strong genetic similarities among all humans do not prove recent common ancestry, but rather reflect the interconnectedness of human populations around the world, resulting in relatively constant gene flow (Thorne and Wolpoff 1992).  They further argue that this model is consistent with clinal patterns of phenotypic variation (Wolpoff 1993). The most important element of this model for theories of race is that it allows a million years for the evolution of ''Homo sapiens'' around the world; this is more than enough time for the evolution of different races.
+
  
Leiberman and Jackson (1995), however, have argued that the multiregional model nevertheless depends on several assumptions &mdash; (1) that marked morphological contrasts exist between individuals found at the center and at the perimeter of Middle Pleistocene range of the genus ''Homo''; (2) that many features can be shown to emerge at the edge of that range before they develop at the center; and (3) that these features exhibit great tenacity through time &mdash; each of which "implies a greater degree of racial differentiation than does the Out-of-Africa displacement model." <ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 237</ref> Against these assumptions, they argue that regional variations in these features can thus be taken as evidence for long term differences ''among'' genus Homo individuals that prefigure different races among present-day Homo sapiens individuals, and do not necessarily support the multi-regional model.
+
==== How much are genes shared? Clustering analyses and what they tell us ====
 +
{{Infobox multi locus allele clusters}}
 +
[[Image:Rosenberg2007.png|thumb|left|150px|Clustering analysis from Rosenberg (2006), there are seven clusters and most individuals belong to several clusters. Note the Kalash have majority membership in a cluster in which individuals from other groups have only a tiny membership.]]
 +
Genetic data can be used to infer population structure and assign individuals to groups that often correspond with their self-identified geographical ancestry. Recently, Lynn Jorde and Steven Wooding argued that "Analysis of many loci now yields reasonably accurate estimates of genetic similarity among individuals, rather than populations. Clustering of individuals is correlated with geographic origin or ancestry."<ref name="jorde">Lynn B Jorde & Stephen P Wooding, 2004, "Genetic variation, classification and 'race'" in ''Nature Genetics'' 36, S28 - S33 [http://www.nature.com/ng/journal/v36/n11s/full/ng1435.html Genetic variation, classification and 'race']</ref>
  
====The out of Africa model====
+
In 2003 [[A. W. F. Edwards]] wrote a paper called [[Lewontin's Fallacy]], rebuking the argument that because most of the variation is within group classification of humans is not possible. He claimed that this conclusion ignores the fact that most of the information that distinguishes populations is hidden in the [[correlation]] structure of the data and not simply in the variation of the individual factors. Edwards concludes that "It is not true that 'racial classification is ... of virtually no genetic or taxonomic significance' or that 'you can't predict someone’s race by their genes'."<ref>[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=12879450&dopt=Abstract "Human genetic diversity: Lewontin's fallacy."], Edwards AW., Gonville and Caius College, Cambridge, in ''PubMed'', 2003 Aug;25(8):798-801.</ref>    Likewise [[Neil Risch]] of [[Stanford University]] has proposed that self-identified race/ethnic group could be a valid means of categorization in the USA for public health and policy considerations.<ref>''[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1196372 Genetic Structure, Self-Identified Race/Ethnicity, and Confounding in Case-Control Association Studies]'' by Hua Tang, Tom Quertermous, Beatriz Rodriguez, Sharon L. R. Kardia, Xiaofeng Zhu, Andrew Brown, James S. Pankow, Michael A. Province, Steven C. Hunt, Eric Boerwinkle, Nicholas J. Schork, and Neil J. Risch Am J Hum Genet. 2005 February; 76(2): 268–275.</ref><ref>''[http://genomebiology.com/2002/3/7/comment/2007 Categorization of humans in biomedical research: genes, race and disease]'' by Neil Risch, Esteban Burchard, Elad Ziv and Hua Tang]'' Genome Biology 2002, 3:comment</ref> While a 2002 paper by [[Noah Rosenberg]]'s group makes a similar claim "The structure of human populations is relevant in various epidemiological contexts. As a result of variation in frequencies of both genetic and nongenetic risk factors, rates of disease and of such phenotypes as adverse drug response vary across populations. Further, information about a patient’s population of origin might provide health care practitioners with information about risk when direct causes of disease are unknown."<ref>Noah A. Rosenberg, Jonathan K. Pritchard, James L. Weber, Howard M. Cann, Kenneth K. Kidd, Lev A. Zhivotovsky, Marcus W. Feldman. ''Genetic Structure of Human Populations. Science'' (2002) '''298''':2381-5</ref>
{{seealso|single origin hypothesis}}
+
[[Image:Human migration.png|thumb|400px|right|Map of early human migrations according to [[Mitochondrial DNA|mitochondrial]] [[population genetics]] ]]
+
  
Archaic ''H. sapiens'' evolved 400,000 to 600,000 years ago. According to the Out of Africa Model, developed by Christopher Stringer and Peter Andrews, modern ''H. sapiens'' evolved in Africa 200,000 years ago and then migrated to Europe and Asia, where it replaced existing hominid species.<ref>Christopher Stringer and Peter Andrews  (1988) "Genetic and Fossil Evidence for the Origin of Modern Humans" in ''Science'' 239: 1263-1268</ref> This time scale &mdash; considerably less than the million years for geographically separate human evolution posited by the Multiregional Model &mdash; leaves less time for genetic divergence among human populations, and thus suggests that humans around the world are more closely related than the Multiregional model would suggest. The Out of Africa Model has gained support by recent, though controversial, research by molecular biologists working with mitochondrial DNA (mtDNA) (this is DNA found in the cytoplasm, rather than nucleus, of cells).  Cann et. al. argue that mtDNA mutates at a faster rate than nuclear DNA and thus facilitates the study of human diversity; moreover, it is inherited solely from the mother and does not recombine, so "it is a tool for relating individuals to one another."  Working with a sample of 145 placentas taken from individuals from five geographic regions (Sub-Saharan Africa, Asia, "Caucasians" &ndash; North Africa, Europe and the Middle East &ndash; aboriginal Australians and Aboriginal New Guineans), they constructed a tree representing relations among 133 different types of mtDNA, and argued that the tree is "a genealogy linking maternal lineages in modern human beings to a common ancestral female. After assessing different trees (i.e. different ways of organizing the results) they reached two significant conclusions: first, that all were descended from a woman from Africa, i.e. that humans evolved in Africa (supporting the Out of Africa model). Second, they concluded that each non-African population had multiple origins, representing different lineages. Based on known figures for the rate of mtDNA mutation, Cann et. al. calculated that modern Humans may have left Africa during one of two periods: 90,000-180,000 years ago, or 23,000-105,000 years ago.  Moreover, humans colonized Australia 40,000 years ago, New Guinea 30,000 years ago, and the New World 12,000 years ago.<ref>Rebecca L. Cann, Mark Stoneking, Allan C. Wilson (1987) "Mitochondrial DNA and human evolution" in ''Nature'' 325: 31-36)</ref><ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 237</ref>  According to Lieberman and Jackson, the Out of Africa Model has several implications for any understanding of races as biological phenomena. First, "the shallow time dimensions minimize the degree to which racial differences could have evolved."  Second, it does present a major distinction between African and Eurasian groups, which "could be used to emphasize biological differences, and thereby provide support for the race concept." <ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 235</ref>    They also observe that "racial stratification is used for initial grouping, and inherent bias is introduced from the very beginning of data collection and interpretation.<ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 238</ref>
+
Researchers such as [[Neil Risch]] and [[Noah Rosenberg]] have argued that a person's biological and cultural background may have important implications for medical treatment decisions, for example an opinion paper by Neil Risch's group in 2002 states: {{quotation|Both for genetic and non-genetic reasons, we believe that racial and ethnic groups should not be assumed to be equivalent, either in terms of disease risk or drug response.....Whether African Americans, Hispanics, Native Americans, Pacific Islanders or Asians respond equally to a particular drug is an empirical question that can only be addressed by studying these groups individually.<ref>Risch, N., Burchard, E., Ziv, E. & Tang, H. Categorization of humans in biomedical research: genes, race, and disease. Genome Biol. 3, 1−12 (2003)</ref>}} While another 2002 paper by Noah Rosenberg's group makes a similar claim {{quotation|The structure of human populations is relevant in various epidemiological contexts. As a result of variation in frequencies of both genetic and nongenetic risk factors, rates of disease and of such phenotypes as adverse drug response vary across populations. Further, information about a patient’s population of origin might provide health care practitioners with information about risk when direct causes of disease are unknown.<ref>Noah A. Rosenberg, Jonathan K. Pritchard, James L. Weber, Howard M. Cann, Kenneth K. Kidd, Lev A. Zhivotovsky, Marcus W. Feldman. ''Genetic Structure of Human Populations. Science'' (2002) '''298''':2381-5</ref>}} This work used samples from the [[Human Genome Diversity Project]] (HGDP), a project that has collected samples from individuals from 52 [[ethnic group]]s from various locations around the world. The HGDP has itself been criticised for collecting samples on an "ethnic group" basis, on the grounds that ethnic groups represent constructed categories rather than categories which are solely natural or biological. The [[Molecular anthropology|molecular anthropologist]] [[Jonathan Marks]] states: {{quotation|As any anthropologist knows, ethnic groups are categories of human invention, not given by nature. Their boundaries are porous, their existence historically ephemeral. There are the French, but no more Franks; there are the English, but no Saxons; and Navajos, but no Anasazi...we cannot really know the nature of the actual relationship of the modern group to the ancient one...The worst mistake you can make in human biology is to confuse constructed categories with natural ones. And to overload a big project with cultural categories as the overall sampling strategy would be a serious problem<ref>Marks, J. (2002) ''What it means to be 98% chimpanzee'' (paperback ed.) pp.202-203. Berkley. University of California Press.</ref>}} In the same issue of ''[[Science (journal)|Science]]'' that published the Rosenberg data, Mary-Claire King and Arno G. Motulsky give a similar warning regarding the HGDP data: {{quotation|The identification of clusters corresponding to the major geographic regions may depend on the sampling of individuals from well-defined, relatively homogeneous populations. If individuals were sampled from a worldwide 'grid' (or a worldwide grid weighted by population density), the clusters might be much less precisely defined. Does the correspondence of worldwide genetic clusters and major geographic regions suggest borders around genetic clusters analogous to the physical borders—oceans, mountain ranges, and deserts—separating geographic regions? No. Both the results of Rosenberg and colleagues and those of previous studies indicate that unlike separations between geographic regions, differences in allele frequencies are gradual.<ref>Mary-Claire King and Arno G. Motulsky ''Mapping Human History. Science'' (2002) '''298''': pp. 2342 - 2343. {{DOI|10.1126/science.1080373}}</ref>}}
  
====Comparison of the two models====
+
Another study by [[Neil Risch]] in 2005 used 326 [[microsatellite]] markers and self-identified race/ethnic group (SIRE), white, African-American, Asian and Hispanic (individuals involved in the study had to choose from one of these categories), to representing discrete "populations", and showed distinct and non-overlapping clustering of the white, African-American and Asian samples. The results were claimed to confirm the integrity of self-described ancestry: "We have shown a nearly perfect correspondence between genetic cluster and SIRE for major ethnic groups living in the United States, with a discrepancy rate of only 0.14%." But also warned that: "This observation does not eliminate the potential for confounding in these populations. First, there may be subgroups within the larger population group that are too small to detect by cluster analysis. Second, there may not be discrete subgrouping but continuous ancestral variation that could lead to stratification bias. For example, African Americans have a continuous range of European ancestry that would not be detected by cluster analysis but could strongly confound genetic case-control studies. (Tang, 2005)
Lieberman and Jackson have argued that while advocates of both the Multiregional Model and the Out of Africa Model use the word race and make racial assumptions, none define the term.<ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 237</ref>  They conclude that
+
"Each model has implications that both magnify and minimize the differences between races. yet each model seems to take race and races as a conceptual reality. The net result is that those anthropologists who prefer to view races as a reality are encouraged to do so" and conclude that students of human evolution would be better off avoiding the word race, and instead describe genetic differences in terms of populations and clinal gradations.<ref>Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ''­American Anthropologist'' Vol. 97, No. 2, pp. 239</ref>
+
  
===Race as lineage===
+
Studies such as those by Risch and Rosenberg use a computer program called STRUCTURE to find human populations (gene clusters). It is a statistical program that works by placing individuals into one of two clusters based on their overall genetic similarity, many possible pairs of clusters are tested per individual to generate multiple clusters.<ref name="Witherspoon">"Genetic Similarities Within and Between Human Populations" (2007) by D.J. Witherspoon, S. Wooding, A.R. Rogers, E.E. Marchani, W.S. Watkins, M.A. Batzer and L.B. Jorde. ''Genetics.'' '''176'''(1): 351–359.</ref> These populations are based on multiple genetic markers that are often shared between different human populations even over large geographic ranges. The notion of a genetic cluster is that people within the cluster share on average similar allele frequencies to each other than to those in other clusters. (Edwards, 2003 but see also infobox "Multi Locus Allele Clusters") In a test of idealised populations, the computer programme STRUCTURE was found to consistently under-estimate the numbers of populations in the data set when high migration rates between populations and slow mutation rates (such as [[single nucleotide polymorphism]]s) were considered.<ref name="population?">Wapples, R., S. and Gaggiotti, O. ''What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity Molecular Ecology'' (2006) '''15:''' 1419–1439. {{doi|10.1111/j.1365-294X.2006.02890.x}}</ref>  
{{seealso|Race and genetics}}
+
[[Image:Rosenberg 6clusters human popluations.png|thumb|right|750px|Human population structure can be inferred from multilocus DNA sequence data (Rosenberg et al. 2002). Individuals from 52 populations were examined at 377 DNA markers. This data was used to partition individuals into different numbers of clusters, K = 2, 3, 4, 5, 6, etc. In this figure, the average fractional membership of individuals from each population is represented by vertical bars partitioned into K=6 colored segments. The K=2 analysis separated Africa and Eurasia from East Asia, Oceania, and America. K=3 separated Africa and Eurasia. K=4 separated America. K=5 separated Oceania (green). K=6 separates the [[Kalash]] population (yellow).]]
+
Work by molecular biologists such as Cann et. al.<ref>Rebecca L. Cann, Mark Stoneking, Allan C. Wilson (1987) "Mitochondrial DNA and human evolution" in Nature 325: 31-36) </ref> on mtDNA has led some scientists, such as Johnson et. al., to a new definition of race as lineage; after constructing a phylogeny of mtDNA types, Johnson et. al. suggested that "the three central types are among those most likely to have been present prior to the formation of the extant human races".<ref>Johnson Mj; Wallace Dc; Ferris Sd; Rattazzi Mc; Cavallisforza Ll (1983) “Radiation Of Human Mitochondria Dna Types Analyzed By Restriction Endonuclease Cleavage Patterns” ''Journal Of Molecular Evolution'' 19 (3-4): 255-271</ref>.  Although most molecular biologists avoid making, or question, using this data to support racial classifications, this view has gained some traction among research in biomedicine, such as Risch et. al.<ref>Risch, N., Burchard, E., Ziv, E. & Tang, H. Categorization of humans in biomedical research: genes, race, and disease. Genome Biol. 3, 1−12 (2003)</ref> and Burchard et. al. <ref>Burchard, E. G. et al. The importance of race and ethnic background in biomedical research and clinical practice. N. Engl. J. Med. 348, 1170−1175 (2003).</ref>
+
  
In the case of mtDNA research, lineages consist of people descended from one female ancestor.{{Fact|date=June 2007}}  This work is being supplemented by recent research by molecular biologists studying the human [[genome]].<ref> Nadia Abu el-Haj (2007) Rethinking Genetic Genealogy" in ''American Ethnology'' 34(2): 224</ref>  With a genome of approximate 3 billion nucleotides, on average two humans differ at approximately 3 million nucleotides. Some of these [[single nucleotide polymorphisms]] (SNPs) are functional and influence the phenotypic differences between humans, which means that they are also subject to natural selection. Nowever, most of these SNPs are [[Neutral theory of molecular evolution|neutral]], meaning they do not express themselves phenotypically and are not subject to natural selection (see [[International HapMap Project]]).<ref> Nadia Abu el-Haj (2007) Rethinking Genetic Genealogy" in ''American Ethnology'' 34(2): 224</ref>  Because this so-called "junk DNA" is not subject to natural selection, it changes very little over the generations.<ref> Nadia Abu el-Haj (2007) Rethinking Genetic Genealogy" in ''American Ethnology'' 34(2): 224</ref>  Consequently, scientists can use the distribution of neutral polymorphisms among contemporary humans to map additional "lineages" (in the case of nuclear DNA, descent from an apical male ancestor).<ref> Nadia Abu el-Haj (2007) Rethinking Genetic Genealogy" in ''American Ethnology'' 34(2): 224-225</ref>  The result has been a new industry in which individuals can send genetic samples to laboratories that identify the person's [[Y chromosome]] or [[mtDNA]] lineage, popularized by scientists such as [[Spencer Wells]].<ref>Spencer Wells (2002) ''The Journey of Man: A Genetic Odyssey'', Penguin, UK; Random House, USA</ref>
+
Nevertheless the Rosenberg ''et al.'' (2002) paper shows that individuals can be assigned to specific clusters to a high degree of accuracy. One of the underlying questions regarding the distribution of human genetic diversity is related to the degree to which genes are shared between the observed clusters. It has been observed repeatedly that the majority of variation observed in the global human population is found within populations. This variation is usually calculated using [[Sewall Wright]]'s [[Fixation index]] (F<sub>ST</sub>), which is an estimate of between to within group variation. The degree of human genetic variation is a little different depending upon the gene type studied, but in general it is common to claim that ~85% of genetic variation is found within groups, ~6-10% between groups within the same continent and ~6-10% is found between continental groups. For example The Human Genome Project states "two random individuals from any one group are almost as different [genetically] as any two random individuals from the entire world."<ref name="witherspoon">''[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1893020 Genetic Similarities Within and Between Human Populations]'' by D. J. Witherspoon, S. Wooding, A. R. Rogers, E. E. Marchani, W. S. Watkins, M. A. Batzer, and L. B. Jorde Genetics. 2007 May; 176(1): 351–359.</ref>  On the other hand Edwards (2003) claims in his essay "[[Lewontin's Fallacy]]" that: "It is not true, as ''Nature'' claimed, that 'two random individuals from any one group are almost as different as any two random individuals from the entire world'" and Risch ''et al.'' (2002) state "Two Caucasians are more similar to each other genetically than a Caucasian and an Asian." It should be noted that these statements are not the same. Risch ''et al.'' simply state that two [[Indigenous peoples|indigenous]] individuals from the same geographical region are more similar to each other than either is to an indigenous individual from a different geographical region, a claim few would argue with. Jorde et al put it like this:
  
Genetic data can be used to infer population structure and assign individuals to groups that often correspond with their self-identified geographical ancestry.  Recently, Lynn Jorde and Steven Wooding argued that "Analysis of many loci now yields reasonably accurate estimates of genetic similarity among individuals, rather than populations. Clustering of individuals is correlated with geographic origin or ancestry." <ref>Lynn B Jorde & Stephen P Wooding, 2004, "Genetic variation, classification and 'race'" in ''Nature Genetics''  36, S28 - S33 [http://www.nature.com/ng/journal/v36/n11s/full/ng1435.html Genetic variation, classification and 'race']</ref>
+
{{quotation|The picture that begins to emerge from this and other analyses of human genetic variation is that variation tends to be geographically structured, such that most individuals from the same geographic region will be more similar to one another than to individuals from a distant region.<ref name="jorde"/>}}
  
The inference of population structure from multilocus genotyping depends on the selection of a large number of informative genetic markers. These studies usually find that groups of humans living on the same continent are more similar to one another than to groups living on different continents. Many such studies are criticized for assigning group identity ''a priori''. However, even if group identity is stripped and group identity assigned ''a posteriori'' using only genetic data, population structure can still be inferred. For example, using 377 markers, Rosenberg et al. (2002) were able to assign 1,056 individuals from 52 populations around the globe to one of six genetic clusters, of which five correspond to major geographic regions.
+
Whereas Edwards claims that it is not true that the differences between individuals from different geographical regions represent only a small proportion of the variation within the human population (he claims that within group differences between individuals are not almost as large as between group differences). Bamshad ''et al.'' (2004) used the data from Rosenberg ''et al.'' (2002) to investigate the extent of genetic differences between individuals within continental groups relative to genetic differences between individuals between continental groups. They found that though these individuals could be classified very accurately to continental clusters, there was a significant degree of genetic overlap on the individual level, to the extent that, using 377 loci, individual Europeans were about 38% of the time more genetically similar to East Asians than to other Europeans.
 +
 
 +
The results obtained by clustering analyses are dependent on several criteria:
 +
* The clusters produced are relative clusters and not absolute clusters, each cluster is the product of comparisons between sets of data derived for the study, results are therefore highly influenced by sampling strategies. (Edwards, 2003)
 +
* The geographic distribution of the populations sampled, because human genetic diversity is marked by isolation by distance, populations from geographically distant regions will form much more discrete clusters than those from geographically close regions. (Kittles and Weiss, 2003)
 +
* The number of genes used. The more genes used in a study the greater the resolution produced and therefore the greater number of clusters that will be identified. (Tang, 2005)
 +
 
 +
 
 +
The existence of allelic clines and the observation that the bulk of human variation is continuously distributed, has led some scientists to conclude that any categorization schema attempting to partition that variation meaningfully will necessarily create artificial truncations. (Kittles & Weiss 2003). It is for this reason, Reanne Frank argues, that attempts to allocate individuals into ancestry groupings based on genetic information have yielded varying results that are highly dependent on methodological design.<ref name="Frank">[http://paa2006.princeton.edu/download.aspx?submissionId=61713 Back with a Vengeance: the Reemergence of a Biological Conceptualization of Race in Research on Race/Ethnic Disparities in Health Reanne Frank]</ref> Serre and Pääbo (2004) make a similar claim:{{quotation|The absence of strong continental clustering in the human gene pool is of practical importance. It has recently been claimed that “the greatest genetic structure that exists in the human population occurs at the racial level” (Risch et al. 2002). Our results show that this is not the case, and we see no reason to assume that “races” represent any units of relevance for understanding human genetic history.}}
 +
 
 +
In a response to Serre and Pääbo (2004), Rosenberg ''et al.'' (2005) make three relevant observations. Firstly they maintain that their clustering analysis is robust. Secondly they agree with Serre and Pääbo that membership of multiple clusters can be interpreted as evidence for clinality (isolation by distance), though they also comment that this may also be due to admixture between neighbouring groups (small island model). Thirdly they comment that evidence of clusterdness is not evidence for any concepts of "biological race". {{quotation|Serre and Pääbo argue that human genetic diversity consists of clines of variation in allele frequencies. We agree and had commented on this issue in our original paper: “In several populations, individuals had partial membership in multiple clusters, with similar membership coefficients for most individuals. These populations might reflect continuous gradations across regions or admixture of neighboring groups.” (Rosenberg, 2002) At the same time, we find that human genetic diversity consists not only of clines, but also of clusters, which STRUCTURE observes to be repeatable and robust....Our evidence for clustering should not be taken as evidence of our support of any particular concept of “biological race.” In general, representations of human genetic diversity are evaluated based on their ability to facilitate further research into such topics as human evolutionary history and the identification of medically important genotypes that vary in frequency across populations. Both clines and clusters are among the constructs that meet this standard of usefulness: for example, clines of allele frequency variation have proven important for inference about the genetic history of Europe, and clusters have been shown to be valuable for avoidance of the false positive associations that result from population structure in genetic association studies. The arguments about the existence or nonexistence of “biological races” in the absence of a specific context are largely [[wikt:orthogonal|orthogonal]] to the question of scientific utility, and they should not obscure the fact that, ultimately, the primary goals for studies of genetic variation in humans are to make inferences about human evolutionary history, human biology, and the genetic causes of disease.<ref name="rosenberg2005>''Rosenberg NA, Mahajan S, Ramachandran S, Zhao C, Pritchard JK, ''et al.'' (2005) ''Clines, Clusters, and the Effect of Study Design on the Inference of Human Population Structure. PLoS Genet'' '''1(6)''': e70 {{doi|10.1371/journal.pgen.0010070}}</ref>}}
 +
 
 +
Similarly Witherspoon ''et al.'' (2007) have shown that while it is possible to classify people into genetic clusters this does not resolve the observation that any two individuals from different populations are often genetically more similar to each other than to two individuals from the same population:{{quotation|Discussions of genetic differences between major human populations have long been dominated by two facts: (a) Such differences account for only a small fraction of variance in allele frequencies, but nonetheless (b) multilocus statistics assign most individuals to the correct population. This is widely understood to reflect the increased discriminatory power of multilocus statistics. Yet Bamshad et al. (2004) showed, using multilocus statistics and nearly 400 polymorphic loci, that (c) pairs of individuals from different populations are often more similar than pairs from the same population. If multilocus statistics are so powerful, then how are we to understand this finding?<br> All three of the claims listed above appear in disputes over the significance of human population variation and "race"...The Human Genome Project  (2001, p. 812) states that "two random individuals from any one group are almost as different [genetically] as any two random individuals from the entire world."<ref name="witherspoon"/>}}
 +
Risch ''et al.'' (2002) state that "two Caucasians are more similar to each other genetically than a Caucasian and an Asian", but Bamshad ''et al'' (2004)<ref name="bamshad 2004">Bamshad, Wooding, Salisbury§ and Stephens (2004) ''Deconstructing the relationship between genetics and race. Nature Reviews Genetics'' '''8''':598-609. {{doi|10.1038/nrg1401}}</ref>  used the same data set as Rosenberg ''et al.'' (2002) to show that Europeans are more similar to Asians 38% of the time than they are to other Europeans when only 377 microsatellite markers are analysed.
 +
 
 +
[[Image:IBD SIM.png|thumb|right|200px|If a landmass is considered with variation distributed in two dimensions west - east. Top: Distribution of genetic variation if a small island model is considered, there are two "populations" with a narrow region of hybridisation where migration occurs, this pattern is clustered. Bottom: Distribution of genetic variation if isolation by distance is considered, all variation is gradual over the extent of the landmass, this pattern is clinal.]]
 +
{| class="wikitable" style="text-align:center"
 +
|+ Percentage similarity between two individuals from different clusters when 377 microsatellite markers are considered.<ref>The table gives the percentage likelihood that two individuals from different clusters are genetically more similar to each other than to someone from their own population when 377 microsatellite markers are considered from Bamshad ''et al.'' (2004){{doi|10.1038/nrg1401}}, original data from Rosenberg (2002).</ref>
 +
|-
 +
! x !! Africans !! Europeans !! Asians
 +
|-
 +
! Europeans
 +
| 36.5 || — || —
 +
|-
 +
! Asians
 +
| 35.5 || 38.3 || —
 +
|-
 +
! Indigenous Americans
 +
| 26.1 || 33.4 || 35
 +
|}
  
Genetic techniques that distinguish clustering between continents can also be used to describe clustering within continents. However, the study of intra-continental ancestry may require a greater number of informative markers. Indigenous populations from neighboring geographic regions on average share more recent common ancestors. As a result, allele frequencies will be correlated between these groups. This phenomenon is often seen as a cline of allele frequencies. The existence of allelic clines has been offered as evidence that individuals cannot be allocated into genetic clusters (Kittles & Weiss 2003). However, others argue that low levels of differentiation between groups merely make the assignment to groups more difficult, not impossible (Bamshad et al. 2004).  Also, clines and clusters, seemingly discordant perspectives on human genetic diversity may be reconciled. A recent comprehensive study has stated: "At the same time, we find that human genetic diversity consists not only of clines, but also of clusters."<ref>Clines, Clusters, and the Effect of Study Design on the Inference of Human Population Structure [http://genetics.plosjournals.org/perlserv/?request=get-document&doi=10.1371%2Fjournal.pgen.0010070]</ref>  Such new data on human genetic variation has reignited the debate surrounding race. Most of the controversy surrounds the question of how to interpret these new data, and whether conclusions based on existing data are sound. A large majority of researchers endorse the view that continental groups do not constitute different subspecies.  
+
In agreement with the observation of Bamshad ''et al.'' (2004), Witherspoon ''et al.'' (2007) have shown that many more than 326 or 377 microsatellite loci are required in order to show that individuals are always more similar to individuals in their own population group than to individuals in different population groups, even for three distinct populations.<ref name="witherspoon">''[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1893020 Genetic Similarities Within and Between Human Populations]'' by D. J. Witherspoon, S. Wooding, A. R. Rogers, E. E. Marchani, W. S. Watkins, M. A. Batzer, and L. B. Jorde Genetics. 2007 May; 176(1): 351–359.</ref>
  
However, other researchers still debate whether evolutionary lineages should rightly be called "races".{{Fact|date=June 2007}} Genetic lineages have in common with older notions of race the idea of biological relatedness.{{Fact|date=June 2007}}  Unlike older notions of race, however, they are not connected to claims about human behavior or character.  Nadia Abu el-Haj has thus argued that "postgenomics does seem to be giving race a new lease on life."  Nevertheless, Abu el-Haj argues that in order to understand what it means to think of race in terms of genetic lineages, one must understand that
+
In 2007 Witherspoon ''et al.'' sought to investigate these apparently contradictory observations. In their paper ''Genetic similarities within and between human populations''<ref name="witherspoon"/> they expand upon the observation of Bamshad ''et al.'' (2004). They show that the observed clustering of human populations into relatively discrete groups is a product of using what they call "population trait values". This means that each individual is compared to the "typical" trait for several populations, and assigned to a population based on the individual's overall similarity to one of the populations as a whole: "population membership is treated as an additive quantitative genetic trait controlled by many loci of equal effect, and individuals are divided into populations on the basis of their trait values." They therefore claim that clustering analyses cannot necessarily be used to make inferences regarding the similarity or dissimilarity of individuals between or within clusters, but only for similarities or dissimilarities of individuals to the "trait values" of any given cluster. The paper measures the rate of misclassification using these "trait values" and calls this the "population trait value misclassification rate" (C<sub>T</sub>). The paper investigates the similarities between individuals by use of what they term the "dissimilarity fraction" (ω): "the probability that a pair of individuals randomly chosen from different populations is genetically more similar than an independent pair chosen from any single population." Witherspoon ''et al.'' show that two individuals can be more genetically similar to each other than to the typical genetic type of their own respective populations, and yet be correctly assigned to their respective populations. An important observation is that the likelihood that two individuals from different populations will be more similar to each other genetically than two individuals from the same population depends on several criteria, most importantly the number of genes studied and the distinctiveness of the populations under investigation.{{quotation|Given 10 loci, three distinct populations, and the full spectrum of polymorphisms, the answer is ω ~ 0.3, or nearly one-third of the time. With 100 loci, the answer is ~20% of the time and even using 1000 loci, ω ~ 10%. However, if genetic similarity is measured over many thousands of loci, the
:Race science was never just about classification.  It presupposed a distinctive relationship between "nature" and "culture," understanding the differences in the former to ground and to generate the different kinds of persons ("natural kinds") and the distinctive stages of cultures and civilizations that inhabit the world.
+
answer becomes ''never'' when individuals are sampled from geographically separated populations.}}
Abu el-Haj argues that genomics and the mapping of lineages based on junk DNA liberates "the new racial science from the older one by disentangling ancestry from culture and capacity." As an example, she refers to recent work by Hammer et. al., which aimed to test the claim that present-day Jews are more closely related to one another than to neighboring non-Jewish populations.  Hammer et. al found that the degree of genetic similarity among Jews shifted depending on the locus investigated, and suggested that this was the result of natural selection acting on particular locii. They therefore focused on the nonrecombining Y chromosome to "circumvent some of the complications associeted with selection" <ref>Hammer, M.F., A.J. Redd, E.T. Wood, M. R. Bonner, H. Jarjanazi, T. karafet, S. Santachiara-Benerecetti, A. Oppenheimer, M.A. Jobling, T. Jenkins, H. Ostrer, and B. Bonne-Tamir (2000) "Jewish and Middle Eastern Non-jewish Populations Share a Common pool of Y-Chromosome Biallelic Haplotypes" in ''Proceedings of the National Cacademy of Sciences'' 97(12): 6769-6774</ref>. As another example she points to work by Thomas et. al., who sought to distinguish between the Y chromosomes of Jewish priests (in Judaism, membership in the priesthood is passed on through the father's line) and the Y chromosomes of non-Jews.<ref> Thomas, M. K. Skoprecski, K. Ben-Ami, H. Parfitt, T. Bradman, and D.B. Goldstein (1988) "Oriigins of Old Testament priests" in ''Nature'' 394(6689): 138-140</ref>Abu el-Haj concluded that this new "race science" calls attention to the importance of "ancestry" (narrowly defined, as it does not include all ancestors) in some relgions and in popular culture, and peoples' desire to use science to confirm their claims about ancestry; this "race science," she argues is fundamentally different from older notions of race that were used to explain differences in human behavior or social status:
+
:As neutral markers, [junk DNA] cannot generate cultural, behavioral, or, for that matter, truly biological differences between groups .... mtDNA and Y-chromosome markers relied on in such work are not "traits" or "qualities" in the old racial sense. They do not render some populations more prone to violence, more likely to suffer psychiatric disorders, or for that matter, incapable of being fully integrated - because of their lower evolutionary development - into a European cultural world. Instead, they are "marks," signs of religious beliefs and practices .... it is via biological noncoding genetic evidence that one can demonstrate that history itself is shared, that historical traditions are (or might well be) true."<ref> Nadia Abu el-Haj (2007) Rethinking Genetic Genealogy" in ''American Ethnology'' 34(2): 224-225</ref>
+
  
The question is, how highly do genetic lineages correlate with self-identified races?  Scientists are divided.  Some recent research indicates that self-described race is a near-perfect indicator of an individual's genetic profile, at least in the United States. Using 326 genetic markers, Tang et al. (2005) identified 4 genetic clusters among 3,636 individuals sampled from 15 locations in the United States, and were able to correctly assign individuals to groups that correspond with their self-described race/ethnicity (white, African American, East Asian, or Hispanic) for all but 5 individuals (an error rate of 0.14%). They conclude that ancient ancestry, which correlates tightly with self-described race and not current residence, is the major determinant of genetic structure in the U.S. population.
+
By geographically separated populations, they mean sampling of people only from distant geographical regions while omitting intermediate regions, in this case Europe, sub-Saharan Africa, and East Asian. They continue:
  
However, in analyses that assign individuals to groups it becomes less apparent that self-described racial groups are reliable indicators of ancestry. One cause of the reduced power of the assignment of individuals to groups is [[wiktionary:admixture|admixture]]. Some racial or ethnic groups, especially [[Hispanic]] groups, do not have homogenous ancestry. For example, self-described African Americans tend to have a mix of West African and European ancestry. Shriver et al. (2003)<ref name="Shriver03" /> found that on average African Americans have ~80% African ancestry. Also, in a survey of college students who self-identified as “white” in a northeastern U.S. university, ~30% of whites had less than 90% European ancestry.<ref>http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275602</ref>
+
{{quotation|On the other hand, if the entire world population were analyzed, the inclusion of many closely related and admixed populations would increase ω... In a similar vein, Romualdi ''et al.'' (2002) and Serre and Paabo (2004) have suggested that highly accurate classification of individuals from continuously sampled (and therefore closely related) populations may be impossible.... Classification methods typically make use of aggregate properties of populations, not just properties of individuals or even of pairs of individuals... The Structure classification algorithm (Pritchard et al. 2000) also relies on aggregate properties of populations, such as Hardy–Weinberg and linkage equilibrium. In contrast, the pairwise distances used to compute ω make no use of population-level information and are strongly affected by the high level of within-groups variation typical of human populations. This accounts for the difference in behavior between ω and the classification results.}}
  
Moreover, many have criticized this notion of lineage which is based on the identification of one male or one female apical ancestor at the time of a population bottleneck,{{Fact|date=June 2007}} while disregarding (because unavailable using genomic technology) countless other ancestors every individual has and shares with others, including people of different "lineages."  Charles Rotimi, of Howard University's National Human Genome center, has highlighted the methodological flaws in research &mdash; that "the nature or appearance of genetic clustering (grouping) of people is a function of how populations are sampled, of how criteria for boundaries between clusters are set, and of the level of resolution used" all bias the results &mdash; and concluded that people should be very cautious about relating genetic lineages to their own sense of identity.<ref>Charles Rotimi (2003) "Genetic Ancestry Tracing and the Abridan identity: A Double-Edged Sword?" in ''Developing World Bioethics'' 3(2): 153-154.</ref>  Moreover, Stephan Palmie has responded to Abu el-Haj's claim that genetic lineages make possible a new, politically, economically, and socially benign notion of race and racial difference by suggesting that efforts to link genetic history and personal identity will inevitably "ground present social arrangements in a time-hallowed past," that is, use biology to explain cultural differences and social inequalities.<ref>Stephan Palmie (2007) "Genomic Moonlighting, Jewish Cyborgs, and Peircian Abduction" in ''American Ethnologist'' 34(2): 249</ref>
+
Witherspoon ''et al.'' also add: {{quotation|given enough genetic data, individuals can be correctly assigned to their populations of origin is compatible with the observation that most human genetic variation is found within populations, not between them. It is also compatible with our finding that, even when the most distinct populations are considered and hundreds of loci are used, individuals are frequently more similar to members of other populations than to members of their own population.}}
  
===Summary of different definitions of race===
+
===Summary of different biological definitions of race===
  
 
{| class="wikitable"
 
{| class="wikitable"
Line 189: Line 247:
 
|-
 
|-
 
| Taxonomic || [[Ernst Mayr|Mayr]] (1969) || "An aggregate of phenotypically similar populations of a species, inhabiting a geographic subdivision of the range of a species, and differing taxonomically from other populations of the species."
 
| Taxonomic || [[Ernst Mayr|Mayr]] (1969) || "An aggregate of phenotypically similar populations of a species, inhabiting a geographic subdivision of the range of a species, and differing taxonomically from other populations of the species."
|-
 
| Clade || [[Michael Levin|Levin]] (2002) || Race "connotes geographic ancestry, by continent or large continental subregion" and "is used to denote continental or subcontinental clades". In "Cladistic taxonomy ... the basic taxon [is] the genealogical unit, ancestors-plus-line- (or tree) -of-descent, what according to the present analysis races are."
 
 
|-
 
|-
 
| Population || [[Theodosius Dobzhansky|Dobzhansky]] (1970) || "Races are genetically distinct Mendelian populations. They are neither individuals nor particular genotypes, they consist of individuals who differ genetically among themselves."
 
| Population || [[Theodosius Dobzhansky|Dobzhansky]] (1970) || "Races are genetically distinct Mendelian populations. They are neither individuals nor particular genotypes, they consist of individuals who differ genetically among themselves."
Line 198: Line 254:
  
 
=== Current views across disciplines ===
 
=== Current views across disciplines ===
One result of debates over the meaning and validity of the concept "race" is that the current literature across different disciplines regarding human variation lacks [[scientific consensus|consensus]], though within some fields, such as biology, there is strong consensus. Some studies use the word race in its early [[essentialism|essentialist]] [[taxonomic]] sense. Many others still use the term race, but use it to mean a population, [[clade]], or [[haplogroup]]. Others eschew the concept of race altogether, and use the concept of population as a less problematical unit of analysis.
+
One result of debates over the meaning and validity of the concept "race" is that the current literature across different disciplines regarding human variation lacks [[scientific consensus|consensus]], though within some fields, such as biology, there is strong consensus. Some studies use the word race in its early [[essentialism|essentialist]] [[taxonomic]] sense. Many others still use the term race, but use it to mean a population, [[clade]], or [[haplogroup]]. Others eschew the concept of race altogether, and use the concept of population as a less problematical unit of analysis.
 
+
In the 19th century, race was a central concept of [[anthropology]]. In 1866, [[James Hunt]], the founder of the [[Anthropological Society of London]], declared that anthropology’s primary truth “is the existence of well-marked psychological and moral distinctions in the different races of men.” However, this view was largely rejected by the community of social sciences in the second half of the 20th century.
+
 
+
Scientific support for the Caucasoid, Negroid, Mongoloid terminology of racial classification has diminished over the past century. These terms originally denoted skull types and sprang from the technique known as ''[[Craniofacial Anthropometry|craniofacial anthropometry]]'', but these disciplines have been abandoned by the mainstream scientific community. Today they have only two common uses. They are used in ''[[forensic anthropology]]'' as an indicator of ethnicity of skeletal remains. And they can be used as euphemisms for making racially based distinctions that are now regarded as being [[racist]] and baseless by mainstream culture.
+
  
Since 1932, some [[college]] [[textbook]]s introducing physical anthropology have increasingly come to reject race as a valid concept: from 1932 to 1976, only seven out of thirty-two rejected race; from 1975 to 1984, thirteen out of thirty-three rejected race; from 1985 to 1993, thirteen out of nineteen rejected race. According to one academic journal entry, where 78 percent of the articles in the 1931 ''Journal of Physical Anthropology'' employed these or nearly synonymous terms reflecting a bio-race paradigm, only 36 percent did so in 1965, and just 28 percent did in 1996.<ref>Leonard Lieberman, Rodney C. Kirk, and Alice Littlefield, "Perishing Paradigm: Race—1931-99," ''American Anthropologist'' 105, no. 1 (2003): 110-13. A following article in the same issue, by Mat Cartmill and Kaye Brown, questions the precise rate of decline, but from their biased perspective agree that the Negroid/Caucasoid/Mongoloid paradigm has fallen into near-total disfavor.</ref>  The American Anthropological Association, drawing on biological research, currently holds that "The concept of race is a social and cultural construction. . . . Race simply cannot be tested or proven scientifically," and that, "It is clear that human populations are not unambiguous, clearly demarcated, biologically distinct groups. The concept of 'race' has no validity . . . in the human species".<ref name="AAAonRace">[http://www.aaanet.org/stmts/racepp.htm American Anthropological Association Statement on "Race"]</ref>
+
Since 1932, some [[college]] [[textbook]]s introducing physical anthropology have increasingly come to reject race as a valid concept: from 1932 to 1976, only seven out of thirty-two rejected race; from 1975 to 1984, thirteen out of thirty-three rejected race; from 1985 to 1993, thirteen out of nineteen rejected race. According to one academic journal entry, where 78 percent of the articles in the 1931 ''Journal of Physical Anthropology'' employed these or nearly synonymous terms reflecting a bio-race paradigm, only 36 percent did so in 1965, and just 28 percent did in 1996.<ref>Leonard Lieberman, Rodney C. Kirk, and Alice Littlefield, "Perishing Paradigm: Race—1931-99," ''American Anthropologist'' 105, no. 1 (2003): 110-13. A following article in the same issue, by Mat Cartmill and Kaye Brown, questions the precise rate of decline, but from their biased perspective agree that the Negroid/Caucasoid/Mongoloid paradigm has fallen into near-total disfavor.</ref>  The American Anthropological Association, drawing on biological research, currently holds that "The concept of race is a social and cultural construction... . Race simply cannot be tested or proven scientifically," and that, "It is clear that human populations are not unambiguous, clearly demarcated, biologically distinct groups. The concept of 'race' has no validity ... in the human species".<ref name="AAAonRace"/>
  
 
In an ongoing debate, some geneticists argue that race is neither a meaningful concept nor a useful [[heuristic]] device,<ref>(Wilson ''et al.'' 2001), (Cooper ''et al.'' 2003) (given in summary by Bamshad ''et al.'' 2004 p.599)</ref> and even that genetic differences among groups are biologically meaningless,<ref>(Schwartz 2001), (Stephens 2003) (given in summary by Bamshad ''et al.'' 2004 p.599)</ref> on the grounds that more genetic variation exists within such races than among them, and that racial traits overlap without discrete boundaries.<ref>(Smedley and Smedley 2005), (Helms ''et al.'' 2005), [http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2004000300003&lng=es&nrm=iso]. Lewontin, for example argues that there is no biological basis for race on the basis of research indicating that more genetic variation exists within such races than among them (Lewontin 1972).</ref>
 
In an ongoing debate, some geneticists argue that race is neither a meaningful concept nor a useful [[heuristic]] device,<ref>(Wilson ''et al.'' 2001), (Cooper ''et al.'' 2003) (given in summary by Bamshad ''et al.'' 2004 p.599)</ref> and even that genetic differences among groups are biologically meaningless,<ref>(Schwartz 2001), (Stephens 2003) (given in summary by Bamshad ''et al.'' 2004 p.599)</ref> on the grounds that more genetic variation exists within such races than among them, and that racial traits overlap without discrete boundaries.<ref>(Smedley and Smedley 2005), (Helms ''et al.'' 2005), [http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X2004000300003&lng=es&nrm=iso]. Lewontin, for example argues that there is no biological basis for race on the basis of research indicating that more genetic variation exists within such races than among them (Lewontin 1972).</ref>
Other geneticists, in contrast, argue that categories of self-identified race/ethnicity or biogeographic ancestry are both valid and useful,<ref>(Risch ''et al.'' 2002), (Bamshad 2005). [[Neil Risch]] argues: "One could make the same arguments about sex and age! ... you can undermine any definitional system... In a recent study... we actually had a higher discordance rate between self-reported sex and markers on the X chromosome [than] between genetic structure [based on microsatellite markers] versus [racial] self-description, [which had a] 99.9% concordance... So you could argue that sex is also a problematic category. And there are differences between sex and gender; self-identification may not be correlated with biology perfectly. And there is sexism. And you can talk about age the same way. A person's chronological age does not correspond perfectly with his biological age for a variety of reasons, both inherited and non-inherited. Perhaps just using someone's actual birth year is not a very good way of measuring age. Does that mean we should throw it out? ... Any category you come up with is going to be imperfect, but that doesn't preclude you from using it or the fact that it has utility"(Gitschier 2005).</ref> that these categories correspond with clusters [[Race and genetics#Genetic variation is structured by geographic origin|inferred from multilocus genetic data]],<ref>(Harpending and Rogers 2000), (Bamshad ''et al.'' 2003), (Edwards 2003), (Bamshad ''et al.'' 2004), (Tang ''et al.'' 2005), (Rosenberg ''et al.'' 2005): "If enough markers are used... individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe".</ref> and that this correspondence implies that genetic factors might contribute to unexplained phenotypic variation between groups.<ref>(Mountain and Risch 2004)</ref>
+
Other geneticists, in contrast, argue that categories of self-identified race/ethnicity or biogeographic ancestry are both valid and useful,<ref>(Risch ''et al.'' 2002), (Bamshad 2005). [[Neil Risch]] argues: "One could make the same arguments about sex and age! ... you can undermine any definitional system... In a recent study... we actually had a higher discordance rate between self-reported sex and markers on the X chromosome [than] between genetic structure [based on microsatellite markers] versus [racial] self-description, [which had a] 99.9% concordance... So you could argue that sex is also a problematic category. And there are differences between sex and gender; self-identification may not be correlated with biology perfectly. And there is sexism. And you can talk about age the same way. A person's chronological age does not correspond perfectly with his biological age for a variety of reasons, both inherited and non-inherited. Perhaps just using someone's actual birth year is not a very good way of measuring age. Does that mean we should throw it out? ... Any category you come up with is going to be imperfect, but that doesn't preclude you from using it or the fact that it has utility"(Gitschier 2005).</ref> that these categories correspond with clusters [[Race and genetics#Genetic variation is structured by geographic origin|inferred from multilocus genetic data]],<ref>(Harpending and Rogers 2000), (Bamshad ''et al.'' 2003), (Edwards 2003), (Bamshad ''et al.'' 2004), (Tang ''et al.'' 2005), (Rosenberg ''et al.'' 2005): "If enough markers are used... individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe".</ref> and that this correspondence implies that genetic factors might contribute to unexplained phenotypic variation between groups.<ref>(Mountain and Risch 2004)</ref>
  
In February, 2001, the editors of the medical journal ''Archives of Pediatrics and Adolescent Medicine'' asked authors to no longer use "race" as an explanatory variable and not to use obsolescent terms. Some other peer-reviewed journals, such as the ''New England Journal of Medicine'' and the ''American Journal of Public Health'', have made similar endeavours.<ref> Frederick P. Rivara and Laurence Finberg, "Use of the Terms Race and Ethnicity," ''Archives of Pediatrics & Adolescent Medicine'' 155, no. 2 (2001): 119. For similar author's guidelines, see Robert S. Schwartz, "Racial Profiling in Medical Research," ''The New England Journal of Medicine'', 344 (no, 18, May 3, 2001); M.T. Fullilove, "Abandoning 'Race' as a Variable in Public Health Research: An Idea Whose Time has Come," ''American Journal of Public Health'', 88 (1998), 1297-1298; and R. Bhopal and L. Donaldson, "White, European, Western, Caucasian, or What? Inappropriate Labeling in Research on Race, Ethnicity, and Health." ''American Journal of Public Health'', 88 (1998), 1303-1307.</ref> Furthermore, the National Institutes of Health recently issued a program announcement for grant applications through February 1, 2006, specifically seeking researchers who can investigate and publicize among primary care physicians the detrimental effects on the nation's health of the practice of medical racial profiling using such terms. The program announcement quoted the editors of one journal as saying that, "analysis by race and ethnicity has become an analytical knee-jerk reflex."<ref> See program announcement and requests for grant applications at the NIH website, at URL: http://grants1.nih.gov/grants/guide/pa-files/PA-03-057.html.</ref>
+
In February, 2001, the editors of the medical journal ''Archives of Pediatrics and Adolescent Medicine'' asked authors to no longer use "race" as an explanatory variable and not to use obsolescent terms. Some other peer-reviewed journals, such as the ''New England Journal of Medicine'' and the ''American Journal of Public Health'', have made similar endeavours.<ref> Frederick P. Rivara and Laurence Finberg, "Use of the Terms Race and Ethnicity," ''Archives of Pediatrics & Adolescent Medicine'' 155, no. 2 (2001): 119. For similar author's guidelines, see Robert S. Schwartz, "Racial Profiling in Medical Research," ''The New England Journal of Medicine'', 344 (no, 18, May 3, 2001); M.T. Fullilove, "Abandoning 'Race' as a Variable in Public Health Research: An Idea Whose Time has Come," ''American Journal of Public Health'', 88 (1998), 1297-1298; and R. Bhopal and L. Donaldson, "White, European, Western, Caucasian, or What? Inappropriate Labeling in Research on Race, Ethnicity, and Health." ''American Journal of Public Health'', 88 (1998), 1303-1307.</ref> Furthermore, the National Institutes of Health recently issued a program announcement for grant applications through February 1, 2006, specifically seeking researchers who can investigate and publicize among primary care physicians the detrimental effects on the nation's health of the practice of medical racial profiling using such terms. The program announcement quoted the editors of one journal as saying that, "analysis by race and ethnicity has become an analytical knee-jerk reflex."<ref> See program announcement and requests for grant applications at the NIH website, at [http://grants1.nih.gov/grants/guide/pa-files/PA-03-057.html nih.gov].</ref>
  
A [[Statistical survey|survey]], taken in 1985 (Lieberman ''et al.'' 1992), asked 1,200 scientists how many '''disagree''' with the following proposition: "There are biological races in the species ''Homo sapiens''."  The responses were:
+
A [[Statistical survey|survey]], taken in 1985 (Lieberman ''et al.'' 1992), asked 1,200 American anthropologists how many '''disagree''' with the following proposition: "There are biological races in the species ''Homo sapiens''."  The responses were:
*'''[[biologist]]s 16%'''
+
*'''[[developmental psychologist]]s 36%'''
+
 
*'''[[physical anthropologist]]s 41%'''
 
*'''[[physical anthropologist]]s 41%'''
 
*'''[[cultural anthropologist]]s 53%'''<ref>Bindon, Jim. University of Alabama. "[http://www.as.ua.edu/ant/bindon/ant275/presentations/POST_WWII.PDF#search=%22stanley%20marion%20garn%22 Post World War II"]. 2005. August 28, 2006.</ref>
 
*'''[[cultural anthropologist]]s 53%'''<ref>Bindon, Jim. University of Alabama. "[http://www.as.ua.edu/ant/bindon/ant275/presentations/POST_WWII.PDF#search=%22stanley%20marion%20garn%22 Post World War II"]. 2005. August 28, 2006.</ref>
The figure for physical anthropologists at [[PhD]] granting departments was slightly higher, rising from 41% to 42%, with 50% agreeing. This survey, however, did not specify any particular definition of race (although it did clearly specify ''biological race'' within the ''species'' ''Homo Sapiens''); it is difficult to say whether those who supported the statement thought of race in taxonomic or population terms.
+
The figure for physical anthropologists at [[PhD]] granting departments was slightly higher, rising from 41% to 42%, with 50% agreeing. This survey, however, did not specify any particular definition of race (although it did clearly specify ''biological race'' within the ''species'' ''Homo Sapiens''); it is difficult to say whether those who supported the statement thought of race in taxonomic or population terms.
  
The same survey, taken in 1999 <ref>[http://www.ssc.uwo.ca/psychology/faculty/rushtonpdfs/Lieberman2001CA.pdf]</ref>, showed the following changing results for anthropologists:
+
The same survey, taken in 1999,<ref>[http://www.ssc.uwo.ca/psychology/faculty/rushtonpdfs/Lieberman2001CA.pdf ssc.uwo.ca]</ref> showed the following changing results for anthropologists:
 
*'''[[physical anthropologist]]s 69%'''
 
*'''[[physical anthropologist]]s 69%'''
 
*'''[[cultural anthropologist]]s 80%'''
 
*'''[[cultural anthropologist]]s 80%'''
 +
 +
In [[Poland]] the race concept was rejected by only 25 percent of anthropologists in 2001, although: "Unlike the U.S. anthropologists, Polish anthropologists tend to regard race as a term without taxonomic value, often as a substitute for population."<ref>"'Race'—Still an Issue for Physical Anthropology? Results of Polish Studies Seen in the Light of the U.S. Findings" by Katarzyna A. Kaszycka. American Anthropologist March 2003, Vol. 105, No. 1, pp. 116-124</ref>
 +
 +
In the face of these issues, some evolutionary scientists have simply abandoned the concept of race in favor of "[[Population genetics|population]]."  What distinguishes population from previous groupings of humans by race is that it refers to a breeding population (essential to genetic calculations) and not to a biological [[taxon]]. Other evolutionary scientists have abandoned the concept of race in favor of [[cline (population genetics)|cline]] (meaning, how the frequency of a trait changes along a geographic gradient).  (The concepts of population and cline are not, however, mutually exclusive and both are used by many evolutionary scientists.) 
 +
 +
According to Jonathan Marks,
 +
:By the 1970s, it had become clear that (1)most human differences were cultural; (2) what was not cultural was principally polymorphic - that is to say, found in diverse groups of people at different frequencies; (3) what was not cultural or polymorphic was principally clinal - that is to say, gradually variable over geography; and (4) what was left - the component of human diversity that was not cultural, polymorphic, or clinal - was very small.
 +
 +
:A consensus consequently developed among anthropologists and geneticists that race as the previous generation had known it - as largely discrete, geographically distinct, gene pools - did not exist.<ref> Marks, Jonathan (2007) "Grand Anthropological Themes" in ''American Ethnologist'' 34(2): 234, cf. Marks, Jonathan (1995) ''Human Biodiversity: Genes, Race, and History''. New York: Aldine de Gruyter</ref>
 +
 +
In the face of this rejection of race by evolutionary scientists, many social scientists have replaced the word race with the word "[[Ethnic group|ethnicity]]" to refer to self-identifying groups based on beliefs concerning shared culture, ancestry and history. Alongside empirical and conceptual problems with "race," following the [[Second World War]], evolutionary and social scientists were acutely aware of how beliefs about race had been used to justify discrimination, apartheid, slavery, and genocide. This questioning gained momentum in the [[1960s]] during the U.S. [[civil rights movement]] and the emergence of numerous anti-colonial movements worldwide. They thus came to understood that these justifications, even when expressed in language that sought to appear objective, were [[Social construction|social constructs]].<ref name="Gordon64"/>
  
 
===Races as social constructions===
 
===Races as social constructions===
 
{{main|Social interpretations of race|Racialism}}
 
{{main|Social interpretations of race|Racialism}}
  
Even as the idea of "race" was becoming a powerful organizing principle in many societies, the shortcomings of the concept were apparent. In the Old World, the gradual transition in appearances from one group to adjacent groups emphasized that "one variety of mankind does so sensibly pass into the other, that you cannot mark out the limits between them," as Blumenbach observed in his writings on human variation (Marks 1995, p. 54). As anthropologists and other evolutionary scientists have shifted away from the language of race to the term ''population'' to talk about genetic differences, [[History|Historians]], [[cultural anthropology|anthropologists]] and [[social sciences|social scientists]] have re-conceptualized the term "race" as a cultural category or [[social construct]], in other words, as a particular way that some people have of talking about themselves and others. As Stephan Palmie has recently summarized, race "is not a thing but a social relation" <ref name="Palmie07">Palmie, Stephan (2007) "Genomics, Divination, 'Racecraft'" in ''American Ethnologist'' 34(2): 214</ref>; or, in the words of Katya Gibel Mevorach, "a metonym," "a human invention whose criteria for differentiation are neither universal nor fixed but have always been used to manage difference." <ref name="Mevorach07">Mevorach, Katya Gibel (2007) "Race, Racism and Academic Complicity" in ''American Ethnologist'' 34(2): 239-240</ref>  As such it cannot be a useful analytical concept; rather, the use of the term "race" itself must be analyzed. Moreover, they argue that biology will not explain why or how people use the idea of race: history and social relationships will. For example, the fact that in many parts of the United States, categories such as [[Hispanics in the United States|Hispanic]] or [[Latino]] are viewed to constitute a race, while others view "Hispanic" as referring to an [[Ethnicity|ethnic group]], has more to do with the changing position of Hispanics in U.S. society, especially in the context of [[The civil rights movement]] and [[United States immigration debates|the debate over immigration]].
+
Even as the idea of "race" was becoming a powerful organizing principle in many societies, the shortcomings of the concept were apparent. In the Old World, the gradual transition in appearances from one group to adjacent groups emphasized that "one variety of mankind does so sensibly pass into the other, that you cannot mark out the limits between them," as Blumenbach observed in his writings on human variation (Marks 1995, p. 54). As anthropologists and other evolutionary scientists have shifted away from the language of race to the term ''population'' to talk about genetic differences, [[History|Historians]], [[cultural anthropology|anthropologists]] and [[social sciences|social scientists]] have re-conceptualized the term "race" as a cultural category or [[social construct]], in other words, as a particular way that some people have of talking about themselves and others. As Stephan Palmie has recently summarized, race "is not a thing but a social relation";<ref name="Palmie07"/> or, in the words of Katya Gibel Mevorach, "a metonym," "a human invention whose criteria for differentiation are neither universal nor fixed but have always been used to manage difference."<ref name="Mevorach07"/>  As such it cannot be a useful analytical concept; rather, the use of the term "race" itself must be analyzed. Moreover, they argue that biology will not explain why or how people use the idea of race: history and social relationships will. For example, the fact that in many parts of the United States, categories such as [[Hispanics in the United States|Hispanic]] or [[Latino]] are viewed to constitute a race (instead of an [[Ethnicity|ethnic group]]) reflect this new idea of "race as a social construct". However, it may be in the interest of dominant groups to cluster [[Spanish Language|Spanish speakers]] into a single, isolated population, rather than classifying them according to [[Typology (anthropology)|Race]] (as are the rest of U.S. racial groups). Especially in the context of [[United States immigration debates|the debate over immigration]]. "According to the 2000 census, two-thirds [of Hispanics] are of Mexican heritage . . . So, for practical purposes, when we speak of Hispanics and Latinos in the U.S., we’re really talking about [[Native Americans]]. . . [therefore] if being Hispanic carries any societal consequences that justify inclusion in the pantheon of great American racial minorities, they’re the result of having Native American blood. [But imagine the] the impact this would have on the illegal-immigration debate. It’s one thing to blame the fall of western civilization on illegal Mexican immigration, but quite thornier to blame it on illegal [[Amerindian]] immigration from Mexico." <ref>Separated by a common language: The case of the white Hispanic By Alfredo Tryferis [http://www.rawstory.com/exclusives/tryferis/hispanic.htm]</ref>  
 
+
 
====Race in the United States====
+
:''see also [[Race_and_genetics#Admixture_in_the_United_States|Admixture in the United States]]''
+
The immigrants to the New World came largely from widely separated regions of the Old World—western and northern Europe, western Africa, and, later, eastern Asia and southern Europe. In the Americas, the immigrant populations began to [[miscegenation|mix]] among themselves and with the [[indigenous peoples of the Americas|indigenous inhabitants of the continent]]. In the United States, for example, most people who self-identify as African American have some European ancestors—in one analysis of genetic markers that have differing frequencies between continents, European ancestry ranged from an estimated 7% for a sample of Jamaicans to ∼23% for a sample of African Americans from New Orleans (Parra ''et al.'' 1998). Similarly, many people who identify as European American have some African or Native American ancestors, either through openly interracial marriages or through the gradual inclusion of people with mixed ancestry into the majority population. In a survey of college students who self-identified as [[White people|white]] in a northeastern U.S. university, ∼30% were estimated to have less than 90% European ancestry.<ref name="Shriver03">Shriver ''et al.'' 2003</ref>
+
  
In the United States since its early history, Native Americans, African-Americans and European-Americans were classified as belonging to different races. For nearly three centuries, the criteria for membership in these groups were similar, comprising a person’s appearance, his fraction of known non-White ancestry, and his social circle.<sup>[[#2|2]]</sup> But the criteria for membership in these races diverged in the late 19th century. During Reconstruction, increasing numbers of Americans began to consider anyone with "[[one-drop theory|one drop]]" of "Black blood" to be Black.<sup>[[#3|3]]</sup> By the early 20th century, this notion of invisible blackness was made statutory in many states and widely adopted nationwide.<sup>[[#4|4]]</sup> In contrast, [[Amerindians]] continue to be defined by a certain percentage of "Indian blood" (called ''[[Blood quantum laws|blood quantum]]'') due in large part to [[American slavery ethics]]. Finally, for the past century or so, to be White one had to have "pure" White ancestry. (Utterly European-looking Americans of Hispanic or Arab ancestry are exceptions in being seen as White by most Americans despite traces of known African ancestry.)
+
==== In the United States ====
 +
{{main|Race in the United States}}
 +
:''see also [[Race and genetics#Admixture in the United States|Admixture in the United States]]''
 +
The immigrants to the New World came largely from widely separated regions of the Old World—western and [[northern Europe]], [[western Africa]], and, later, [[eastern Asia]] and [[southern Europe]]. In the [[Americas]], the immigrant populations began to [[miscegenation|mix]] among themselves and with the [[indigenous peoples of the Americas|indigenous inhabitants of the continent]]. In the [[United States]], for example, most people who self-identify as [[African American]] have some [[European ethnic groups|European ancestors]] — in one analysis of genetic markers that have differing frequencies between continents, European ancestry ranged from an estimated 7% for a sample of [[Jamaicans]] to ∼23% for a sample of African Americans from [[New Orleans]] (Parra ''et al.'' 1998). Similarly, many people who identify as [[European American]] have some African or Native American ancestors, either through openly [[interracial marriage]]s or through the gradual inclusion of people with mixed ancestry into the majority population. In a survey of college students who self-identified as [[White people|white]] in a northeastern U.S. university, ∼30% were estimated to have less than 90% European ancestry.<ref name="Shriver03">Shriver ''et al.'' 2003</ref>
  
 +
In the United States since its early history, Native Americans, African-Americans and European-Americans were classified as belonging to different races. For nearly three centuries, the criteria for membership in these groups were similar, comprising a person’s appearance, his fraction of known non-White ancestry, and his social circle.<sup>[[#2|2]]</sup> But the criteria for membership in these races diverged in the late 19th century. During Reconstruction, increasing numbers of Americans began to consider anyone with "[[one-drop theory|one drop]]" of known "Black blood" to be Black regardless of appearance.<sup>[[#3|3]]</sup> By the early 20th century, this notion of invisible blackness was made statutory in many states and widely adopted nationwide.<sup>[[#4|4]]</sup> In contrast, [[Amerindians]] continue to be defined by a certain percentage of "Indian blood" (called ''[[Blood quantum laws|blood quantum]]'') due in large part to [[American slavery ethics]]. Finally, for the past century or so, to be White one had to have perceived "pure" White ancestry.
 
{| class="infobox"
 
{| class="infobox"
 
|{{2000 Race US Census map}}
 
|{{2000 Race US Census map}}
Line 238: Line 300:
 
|<!--Caption here-->
 
|<!--Caption here-->
 
|}
 
|}
 +
Efforts to sort the increasingly mixed population of the United States into discrete categories generated many difficulties (Spickard 1992). By the standards used in past censuses, many millions of children born in the United States have belonged to a different race than have one of their biological parents. Efforts to track mixing between groups led to a proliferation of categories (such as "mulatto" and "octoroon") and "blood quantum" distinctions that became increasingly untethered from self-reported ancestry. A person's racial identity can change over time, and self-ascribed race can differ from assigned race (Kressin ''et al.'' 2003). Until the 2000 census, [[Latino (demonym)|Latinos]] were required to identify with a single race despite the long history of mixing in [[Latin America]]; partly as a result of the confusion generated by the distinction, 32.9% (U.S. census records) of Latino respondents in the 2000 census ignored the specified racial categories and checked "some other race". (Mays ''et al.'' 2003 claim a figure of 42%)
  
Efforts to sort the increasingly mixed population of the United States into discrete categories generated many difficulties (Spickard 1992). By the standards used in past censuses, many millions of children born in the United States have belonged to a different race than have one of their biological parents. Efforts to track mixing between groups led to a proliferation of categories (such as "mulatto" and "octoroon") and "blood quantum" distinctions that became increasingly untethered from self-reported ancestry. A person's racial identity can change over time, and self-ascribed race can differ from assigned race (Kressin ''et al.'' 2003). Until the 2000 census, Latinos were required to identify with a single race despite the long history of mixing in Latin America; partly as a result of the confusion generated by the distinction, 32.9% (U.S. census records) of Latino respondents in the 2000 census ignored the specified racial categories and checked "some other race". (Mays ''et al.'' 2003 claim a figure of 42%)
+
The difference between how Native American and Black identities are defined today (blood quantum versus one-drop) has demanded explanation. According to anthropologists such as [[Gerald Sider]], the goal of such racial designations was to concentrate power, wealth, privilege and land in the hands of Whites in a society of [[White privilege (sociology)|White hegemony and privilege]] (Sider 1996; see also Fields 1990). The differences have little to do with biology and far more to do with the history of [[racism]] and specific forms of [[White supremacy]] (the social, geopolitical and economic agendas of dominant Whites vis-à-vis subordinate Blacks and Native Americans) especially the different roles Blacks and Amerindians occupied in White-dominated 19th century America. The theory suggests that the blood quantum definition of Native American identity enabled Whites to acquire Amerindian lands, while the one-drop rule of Black identity enabled Whites to preserve their agricultural labor force. The contrast presumably emerged because as peoples transported far from their land and kinship ties on another continent, Black labor was relatively easy to control, thus reducing Blacks to valuable [[commodity|commodities]] as agricultural laborers. In contrast, Amerindian labor was more difficult to control; moreover, Amerindians occupied large territories that became valuable as agricultural lands, especially with the invention of new technologies such as railroads; thus, the blood quantum definition enhanced White acquisition of Amerindian lands in a doctrine of [[Manifest Destiny]] that subjected them to marginalization and multiple episodic localized campaigns of extermination.
  
The difference between how Native American and Black identities are defined today (blood quantum versus one-drop) has demanded explanation. According to anthropologists such as [[Gerald Sider]], the goal of such racial designations was to concentrate power, wealth, privilege and land in the hands of Whites in a society of White hegemony and White privilege (Sider 1996; see also Fields 1990). The differences have little to do with biology and far more to do with the history of [[racism]] and specific forms of [[White supremacy]] (the social, geopolitical and economic agendas of dominant Whites vis-à-vis subordinate Blacks and Native Americans) especially the different roles Blacks and Amerindians occupied in White-dominated nineteenth-century America. The theory suggests that the blood quantum definition of Native American identity enabled Whites to acquire Amerindian lands, while the one-drop rule of Black identity enabled Whites to preserve their agricultural labor force. The contrast presumably emerged because as peoples transported far from their land and kinship ties on another continent, Black labor was relatively easy to control, thus reducing Blacks to valuable [[commodity|commodities]] as agricultural laborers. In contrast, Amerindian labor was more difficult to control; moreover, Amerindians occupied large territories that became valuable as agricultural lands, especially with the invention of new technologies such as railroads; thus, the blood quantum definition enhanced White acquisition of Amerindian lands in a doctrine of [[Manifest Destiny]] that subjected them to marginalization and multiple episodic localized campaigns of extermination.
+
The political economy of race had different consequences for the descendants of aboriginal Americans and African slaves. The 19th century blood quantum rule meant that it was relatively easier for a person of mixed Euro-Amerindian ancestry to be accepted as White. The offspring of only a few generations of intermarriage between Amerindians and Whites likely would not have been considered Amerindian at all (at least not in a legal sense). Amerindians could have [[treaty rights]] to land, but because an individual with one Amerindian great-grandparent no longer was classified as Amerindian, they lost any legal claim to Amerindian land. According to the theory, this enabled Whites to acquire Amerindian lands. The irony is that the same individuals who could be denied legal standing because they were "too White" to claim property rights, might still be Amerindian enough to be considered as "[[Half-breed|breeds]]", stigmatized for their Native American ancestry.
  
The political economy of race had different consequences for the descendants of aboriginal Americans and African slaves.  The 19th-century blood quantum rule meant that it was relatively easier for a person of mixed Euro-Amerindian ancestry to be accepted as White. The offspring of only a few generations of intermarriage between Amerindians and Whites likely would not have been considered Amerindian at all&mdash;at least not in a legal sense. Amerindians could have [[treaty rights]] to land, but because an individual with one Amerindian great-grandparent no longer was classified as Amerindian, they lost any legal claim to Amerindian land. According to the theory, this enabled Whites to acquire Amerindian lands. The irony is that the same individuals who could be denied legal standing because they were "too White" to claim property rights, might still be Amerindian enough to be considered as "breeds," stigmatized for their Native American ancestry.
+
The 20th century one-drop rule, on the other hand, made it relatively difficult for anyone of known Black ancestry to be accepted as White. The child of an African-American sharecropper and a White person was considered Black. And, significant in terms of the economics of sharecropping, such a person also would likely be a sharecropper as well, thus adding to the employer's labor force.
  
The 20th-century one-drop rule, on the other hand, made it relatively difficult for anyone of known Black ancestry to be accepted as White. The child of an African-American sharecropper and a White person was considered Black. And, significant in terms of the economics of sharecropping, such a person also would likely be a sharecropper as well, thus adding to the employer's labor force.
+
In short, this theory suggests that in a 20th century economy that benefited from sharecropping, it was useful to have as many Blacks as possible. Conversely, in a 19th century nation bent on westward expansion, it was advantageous to diminish the numbers of those who could claim title to Amerindian lands by simply defining them out of existence.
  
In short, this theory suggests that in a 20th-century economy that benefited from sharecropping, it was useful to have as many Blacks as possible. Conversely, in a 19th-century nation bent on westward expansion, it was advantageous to diminish the numbers of those who could claim title to Amerindian lands by simply defining them out of existence.
+
It must be mentioned, however, that although some scholars of the [[Jim Crow laws|Jim Crow period]] agree that the 20th century notion of invisible Blackness shifted the color line in the direction of paleness, thereby swelling the labor force in response to Southern Blacks' great migration northwards, others (Joel Williamson, C. Vann Woodward, George M. Fredrickson, Stetson Kennedy) see the one-drop rule as a simple consequence of the need to define Whiteness as being pure, thus justifying White-on-Black oppression. In any event, over the centuries when Whites wielded power over both Blacks and Amerindians and widely believed in their inherent superiority over people of color, it is no coincidence that the hardest racial group in which to prove membership was the White one.
  
It must be mentioned, however, that although some scholars of the Jim Crow period agree that the 20th-century notion of invisible Blackness shifted the color line in the direction of paleness, thereby swelling the labor force in response to Southern Blacks' great migration northwards, others (Joel Williamson, C. Vann Woodward, George M. Fredrickson, Stetson Kennedy) see the one-drop rule as a simple consequence of the need to define Whiteness as being pure, thus justifying White-on-Black oppression. In any event, over the centuries when Whites wielded power over both Blacks and Amerindians and widely believed in their inherent superiority over people of color, it is no coincidence that the hardest racial group in which to prove membership was the White one.
+
In the United States, social and legal conventions developed over time that forced individuals of mixed ancestry into simplified racial categories (Gossett 1997). An example is the "[[one-drop rule]]" implemented in some state laws that treated anyone with a single known African American ancestor as black (Davis 2001). The decennial censuses conducted since 1790 in the United States also created an incentive to establish racial categories and fit people into those categories (Nobles 2000). In other countries in the Americas where mixing among groups was overtly more extensive, social categories have tended to be more numerous and fluid, with people moving into or out of categories on the basis of a combination of socioeconomic status, social class, ancestry, and appearance (Mörner 1967).
  
In the United States, social and legal conventions developed over time that forced individuals of mixed ancestry into simplified racial categories (Gossett 1997). An example is the "[[one-drop rule]]" implemented in some state laws that treated anyone with a single known African American ancestor as black (Davis 2001). The decennial censuses conducted since 1790 in the United States also created an incentive to establish racial categories and fit people into those categories (Nobles 2000). In other countries in the Americas where mixing among groups was more extensive, social categories have tended to be more numerous and fluid, with people moving into or out of categories on the basis of a combination of socioeconomic status, social class, ancestry, and appearance (Mörner 1967).
+
The term "[[Hispanic]]" as an [[ethnonym]] emerged in the 20th century with the rise of migration of laborers from American [[Spanish-speaking countries]] to the United States; it thus includes people who had been considered racially distinct (Black, White, Amerindian or other mixed groups) in their home countries. Today, the word "Latino" is often used as a synonym for "Hispanic". If these categories were, however, early on understood as racial categories, there seem to be presently a shift presenting them as ethno-linguistic categories (regardless of perceived race), something that can also been seen as a strategy by some of the categorized in order to be included in the white dominant group (as the emergence of [[White Hispanics]] points to), and at the same time as a rejection of a racial label that many see not only as disciminatory but also as not portraying properly their populational origins. In contrast to "Latino"´or "Hispanic" "[[Anglo]]" is now used in a similar way to refer to non-[[Hispanic]] [[White American]]s or non-[[Hispanic]] [[European American]]s, most of whom speak the English language but are not necessarily of [[English people|English]] descent.
  
The term "Hispanic" as an ethnonym emerged in the twentieth century with the rise of migration of laborers from Spanish-speaking countries to the United States; it thus includes people who had been considered racially distinct (Black, White, Amerindian) in their home countries.  Today, the word "Latino" is often used as a synonym for "Hispanic". In contrast to "Latino," "Anglo" is now used in a similar way to refer to the descendants of British colonists, and values and practices derived from British culture.
+
==== In Brazil ====
 
+
====Race in Brazil====
+
 
{{main|Race in Brazil}}
 
{{main|Race in Brazil}}
Compared to 19th-century United States, 20th-century [[Demographics of Brazil|Brazil]] was characterized by a relative absence of sharply defined racial groups. According to anthropologist Marvin Harris (1989) this pattern reflects a different history and different [[social relations]]. Basically, race in Brazil was "biologized," but in a way that recognized the difference between ancestry (which determines [[genotype]]) and [[phenotypic]] differences. There, racial identity was not governed by a rigid descent rule. A Brazilian child was never automatically identified with the racial type of one or both parents, nor were there only a limited number of categories to choose from. Over a dozen racial categories would be recognized in conformity with all the possible combinations of hair color, hair texture, eye color, and skin color. These types grade into each other like the colors of the spectrum, and no one category stands significantly isolated from the rest. That is, race referred to appearance, not heredity.
+
Compared to 19th century United States, 20th century [[Demographics of Brazil|Brazil]] was characterized by a perceived relative absence of sharply defined racial groups. According to anthropologist Marvin Harris (1989), this pattern reflects a different history and different [[social relations]]. Basically, race in Brazil was "biologized," but in a way that recognized the difference between ancestry (which determines [[genotype]]) and [[phenotypic]] differences. There, racial identity was not governed by such a rigid descent rule as in the United States. A Brazilian child was never automatically identified with the racial type of one or both parents, nor were there only a very limited number of categories to choose from. Over a dozen racial categories would be recognized in conformity with all the possible combinations of hair color, hair texture, eye color, and skin color. These types grade into each other like the colors of the spectrum, and no one category stands significantly isolated from the rest. That is, race referred preferencially to appearance, not heredity.
 
+
Through this system of racial identification, parents and children and even brothers and sisters were frequently accepted as representatives of completely different racial types. In a fishing village in the state of [[Bahia]], an investigator showed 100 people pictures of three sisters and asked them to identify the races of each. In only six responses were the sisters identified by the same racial term. Fourteen responses used a different term for each sister (Harris 1964: 57). In another experiment nine portraits were shown to a hundred people. Forty different racial types were elicited (Harris 1964: 58). It was found, in addition, that a given Brazilian might be called by as many as thirteen different terms by other members of the community (Harris 1964: 57). These terms are spread out across practically the entire spectrum of theoretical racial types. A further consequence of the absence of a descent rule was that Brazilians apparently not only disagreed about the racial identity of specific individuals, but they also seemed to be in disagreement about the abstract meaning of the racial terms as defined by words and phrases. For example, 40% of a sample ranked ''moreno claro'' ("light" person of primarily European ancestry with dark hair) as a lighter type than ''mulato claro'' ("light" person of mixed European and African ancestry), while 60% reversed this order (Harris 1964: 58).  A further note of confusion is that one person might employ different racial terms to describe the same person over a short time span (Harris 1964: 59; Goldstein 1999: 566-568).} [For a solid discussion of Brazilian racial terms, see Livio Sansone's ''Blackness Without Ethnicity'' (2003) and France Winddance Twine's ''Racism in a Racial Democracy'' (1998).] The choice of which racial description to use may vary according to the relationship (be it personal, class-based, or otherwise) between the speaker and the person concerned and moods of the individuals involved (Harris 1964: 59).
+
 
+
So, although the identification of a person by race is far more fluid and flexible in Brazil than in the U.S., there still are racial stereotypes and prejudices. African features have been considered less desirable; Blacks have been considered socially inferior, and Whites superior (Harris 1964: 59-60).  These white [[supremacist]] values seem to be an obvious legacy of European colonization and the slave-based [[plantation system]] (Harris 1964: 54-57). The complexity of racial classifications in Brazil is reflective of the extent of [[miscegenation]] in [[Brazilian society]], a society that remains highly, but not strictly, [[social stratification|stratified]] along color lines. Henceforth, the Brazilian [[narrative]] of a perfect "post-racist" country, composed of the "[[La Raza Cósmica|cosmic race]]" celebrated in 1925 by [[José Vasconcelos]], must be met with caution, as sociologist [[Gilberto Freyre]] demonstrated in 1933 in ''Casa Grande e Senzala''.
+
 
+
== Political and practical uses of race ==
+
===Race and racism===
+
{{main|Racism|Racial segregation}}
+
During [[the Enlightenment]], racial classifications were used to justify [[slavery|enslavement]] of those deemed to be of "inferior", non-White races, and thus supposedly best fitted for lives of toil under White supervision. These classifications made the distance between races seem nearly as broad as that between species, easing unsettling questions about the appropriateness of such treatment of humans. The practice was at the time generally accepted by both scientific and lay communities.
+
 
+
[[Arthur Gobineau]]'s ''[[An Essay on the Inequality of the Human Races]]'' (1853-1855) was one of the milestones in the new [[racist]] [[discourse]], along with [[Vacher de Lapouge]]'s "anthroposociology."  They posited the historical existence of national races such as German and French, branching from basal races supposed to have existed for millennia, such as the [[Aryan race]], and believed political boundaries should mirror these supposed racial ones.
+
 
+
Later, one of [[Adolf Hitler|Hitler]]'s favorite sayings was, "Politics is applied biology". Hitler's ideas of racial purity led to unprecedented atrocities in Europe.  Hitler and others enacted race laws used to persecute and murder millions of Jews, who were seen as a race. Since then, [[ethnic cleansing]] has occurred in the [[Balkans]] and [[Rwandan Genocide|Rwanda]]. ''Ethnic cleansing'' might be seen as another name for the tribal warfare and mass murder that has afflicted human society for ages, but, in modern times, atrocities have regularly been associated with the attempted use of racial inferiority claims to dehumanize some group. Claiming a scientific basis for negative evaluations can give greater credence to such an ideological agenda.
+
 
+
Racial inequality has been a concern of United States politicians and legislators since the country's founding. In the 19th century most White Americans (including [[abolitionist]]s) explained racial inequality as an inevitable consequence of biological differences.{{face}} Since the mid-20th century, political and civic leaders as well as scientists have debated to what extent racial inequality is cultural in origin. Some argue that current inequalities between Blacks and Whites are primarily the result of cultural and historical factors, the result of past racism, of [[slavery]] and of [[Racial segregation|segregation]], and so could be redressed through such programs as [[affirmative action]] and [[Head Start]]. Others work to reduce tax funding of [[remedial programs]] for minorities. They have based their advocacy on aptitude test data that, according to them, shows that racial ability differences are biological in origin and cannot be leveled even by intensive educational efforts. In [[electoral politics]], many more ethnic minorities have recently won important offices in Western nations than in earlier times, although the highest offices tend to remain in the hands of Whites.
+
 
+
In his famous ''[[Letter from Birmingham Jail]]'', the Rev. Dr. [[Martin Luther King Jr.]] observed:
+
 
+
{{quotation|History is the long and tragic story of the fact that privileged groups seldom give up their privileges voluntarily. Individuals may see the moral light and voluntarily give up their unjust posture; but as [[Reinhold Niebuhr]] has reminded us, groups are more immoral than individuals.}}
+
 
+
Dr. King's hope, expressed in his [[I Have a Dream]] speech, was that the [[civil rights]] struggle would one day produce a society where people were not "judged by the color of their skin, but by the content of their character."
+
 
+
Because of the identification of the concept of race with political oppression, many natural and social scientists today are wary of using race to describe human variation. Others simply find race a less useful system of categorization than some other systems. Still others, however, argue that race is of continuing utility and validity in scientific research notwithstanding the objections raised against it.
+
 
+
Some concepts of race are criticized as being based on mere [[conventions]], [[traditions]], or [[statistics]]. The number of racial [[categories]] often seems arbitrary since different authorities define different numbers of races.  Often unique individual human beings seem to get ignored.  The criteria used to divide the human species are also criticized as being arbitrary, and and it is claimed that they often only focus on superficial marker traits such as skin color, geographical range, and thus the traits being used pertain to a very few genes out of a very large human genome.  The varying [[epigenetic]] expressions of the same genes is rarely taken into account.
+
 
+
=== Race and intelligence ===
+
:''Main article: [[Race and intelligence]]''
+
 
+
Researchers have reported differences in the average [[IQ]] test scores of various ethnic groups. The interpretation, causes, accuracy and reliability of these differences are highly controversial. Some researchers, such as [[Arthur Jensen]], [[Richard Herrnstein]], and [[Richard Lynn]] have argued that such differences are at least partially genetic. Others, for example [[Thomas Sowell]], argue that the differences largely owe to social and economic inequalities. Still others have such as [[Stephen Jay Gould]] and [[Richard Lewontin]] have argued that categories such as "race" and "intelligence" are cultural constructs that render any attempt to explain such differences (whether genetically or sociologically) meaningless.
+
 
+
The [[Flynn effect]] is the rise of average Intelligence Quotient (IQ) test scores, an effect seen in most parts of the world, although at varying rates. Scholars therefore believe that rapid increases in average IQ seen in many places are much too fast to be as a result of changes in brain physiology and more likely as a result of environmental changes. The fact that  environment has a significant effect on IQ demolishes the case for the use of IQ data as a source of genetic information<ref name="race_myth">[http://www.amazon.com/gp/reader/0813533023/ biological theories of race page165]</ref><ref name="race_myth2">[http://www.amazon.com/gp/reader/B000F7113I/ page183]</ref>.
+
 
+
=== Race in biomedicine ===
+
:''Main article: [[Race in biomedicine]]''
+
 
+
There is an active debate among biomedical researchers about the meaning and importance of race in their research. The primary impetus for considering race in biomedical research is the possibility of improving the prevention and treatment of [[disease]]s by predicting hard-to-ascertain factors on the basis of more easily ascertained characteristics. Some have argued that in the absence of cheap and widespread genetic tests, racial identification is the best way to predict for certain diseases, such as [[Cystic fibrosis]], [[Lactose intolerance]], [[Tay-Sachs Disease]] and [[sickle cell anemia]], which are genetically linked and more prevalent in some populations than others. The most well-known examples of genetically-determined disorders that vary in incidence among populations would be [[sickle cell disease]], [[thalassaemia]], and [[Tay-Sachs disease]]. [[Image:Sickle cell distribution.jpg|thumb|right|180px| distribution of the sickle cell trait]]
+
[[Image:Malaria distribution.jpg|thumb|right|180px|distribution of [[Malaria]] ]]
+
 
+
There has been criticism of associating disorders with race. For example, in the United States sickle cell is typically associated with black people, but this trait is also found in people of Mediterranean, Middle Eastern or Indian ancestry.<ref>[http://www.ornl.gov/sci/techresources/Human_Genome/posters/chromosome/sca.shtml sickle cell prevalence ]</ref> The sickle cell trait offers some resistance to [[malaria]]. In regions where malaria is present sickle cell has been [[Balancing selection|positively selected]] and consequently the proportion of people with it is greater. Therefore, it has been argued that sickle cell should not be associated with a particular race, but rather with having ancestors who lived in a malaria-prone region. Africans living in areas where there is no malaria, such as the East African highlands, have prevalence of sickle cell as low as parts of Northern Europe.
+
 
+
Another example of the use of race in medicine is the recent [[Food and Drug Administration|U.S. FDA]] approval of [[Isosorbide dinitrate/hydralazine|BiDil]], a medication for congestive heart failure targeted at black people in the United States.<ref>Taylor AL, Ziesche S, Yancy C, Carson P, D'Agostino R Jr, Ferdinand K, Taylor M, Adams K, Sabolinski M, Worcel M, Cohn JN. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med 2004;351:2049-57. PMID 15533851.</ref>  Several researchers have questioned the scientific basis for arguing the merits of a medication based on race, however.  As Stephan Palmie has recently pointed out, black Americans were disproportionately affected by Hurricane Katrina, but for social and not climatological reasons; similarly, certain diseases may disproportionately affect different races, but not for biological reasons.  Several researchers have suggested that BiDil was re-designated as a medicine for a race-specific illness because its manufacturer, Nitromed, needed to propose a new use for an existing medication in order to justify an extension of its patent and thus monopoly on the medication,<ref> Duster, Troy (2005) "Race and Reification in Science" in ''Science'' 307(5712): 1050-1051, Fausto-Sterling, Anne (2004) "Refashioning Race: DNA and the Politics of Health" in ''differences'' 15(3):1-37, Jones, Joseph and Alan Goodman (2005) "BiDil and the 'fact' of Genetic Blackness" in ''Anthropology News'' 46(7):26, Kahn, Joseph (2004) "How a Drug Becomes 'Ethnic:' Law, Commerce, and the Production of Racial Categories in Medicine" in ''Yale Journal of Health Policy, Law and Politics'' 4(1):1-46, Kahn, Joseph (2005) "Misreading Race and Genomics after BiDil" in ''Nature Genetics 37(7):655-656, Palmie, Stephan (2007) "Genomics, Divination and 'Racecraft'" in ''American Ethnologist'' 34(2): 205-222).</ref> not for pharmacological reasons.
+
 
+
[[Gene flow]] and intermixture also have an effect on predicting a relationship between race and "race linked disorders". Multiple sclerosis is typically associated with people of European descent and is of low risk to people of African descent. However due to gene flow between the populations, African Americans have elevated levels of MS relative to Africans.<ref>[http://www.med.harvard.edu/publications/On_The_Brain/Volume05/Number4/MSf.html Multiple Sclerosis. ''The Immune System's Terrible Mistake.''] BY PETER RISKIND, M.D., PH.D.</ref> Notable African Americans affected by MS include [[Richard Pryor]] and [[Montel Williams]]. As populations continue to mix, the role of socially constructed races may diminish in identifying diseases.
+
  
=== Race in law enforcement ===
+
Through this system of racial identification, parents and children and even brothers and sisters were frequently accepted as representatives of completely different racial types. In a fishing village in the state of [[Bahia]], an investigator showed 100 people pictures of three sisters and asked them to identify the races of each. In only six responses were the sisters identified by the same racial term. Fourteen responses used a different term for each sister (Harris 1964: 57). In another experiment nine portraits were shown to a hundred people. Forty different racial types were elicited (Harris 1964: 58). It was found, in addition, that a given Brazilian might be called by as many as thirteen different terms by other members of the community (Harris 1964: 57). These terms are spread out across practically the entire spectrum of theoretical racial types. A further consequence of the absence of a descent rule was that Brazilians apparently not only disagreed about the racial identity of specific individuals, but they also seemed to be in disagreement about the abstract meaning of the racial terms as defined by words and phrases. For example, 40% of a sample ranked ''[[moreno]] claro'' ("light" person of primarily European ancestry with dark hair) as a lighter type than ''[[mulato]] claro'' ("light" person of mixed European and African ancestry), while 60% reversed this order (Harris 1964: 58). A further note of confusion is that one person might employ different racial terms to describe the same person over a short time span (Harris 1964: 59; Goldstein 1999: 566-568).} [For a solid discussion of Brazilian racial terms, see Livio Sansone's ''Blackness Without Ethnicity'' (2003) and France Winddance Twine's ''Racism in a Racial Democracy'' (1998).] The choice of which racial description to use may vary according to the relationship (be it personal, class-based, or otherwise) between the speaker and the person concerned and moods of the individuals involved (Harris 1964: 59).
[[Image:RaceMugshots.jpg|thumb|210px|In the U.S., the [[Federal Bureau of Investigation|FBI]] [[anthropometry|identifies fugitives]] to categories they define as sex, physical features, occupation, nationality, and race. From left to right, the FBI assigns the above individuals to the following races: White, Black, Hispanic, Asian. Top row males, bottom row females.]]
+
  
In an attempt to provide general descriptions that may facilitate the job of [[law enforcement officer]]s seeking to apprehend suspects, the United States [[Federal Bureau of Investigation|FBI]] employs the term "race" to summarize the general appearance (skin color, hair texture, eye shape, and other such easily noticed characteristics) of individuals whom they are attempting to apprehend. From the perspective of [[law enforcement]] officers, it is generally more important to arrive at a description that will readily suggest the general appearance of an individual than to make a scientifically valid categorization by DNA or other such means. Thus in addition to assigning a wanted individual to a racial category, such a description will include: height, weight, eye color, scars and other distinguishing characteristics, etc. [[Scotland Yard]] use a classification based in the ethnic background of [[British society]]: W1 (White-British), W2 (White-Irish), W9 (Any other white background); M1 (White and black Caribbean), M2 (White and black African), M3 (White and Asian), M9 (Any other mixed background); A1 (Asian-Indian), A2 (Asian-Pakistani), A3 (Asian-Bangladeshi), A9 (Any other Asian background); B1 (Black Caribbean), B2 (Black African), B3 (Any other black background); O1 (Chinese), O9 (Any other). Some of the characteristics that constitute these groupings are biological and some are learned (cultural, linguistic, etc.) traits that are easily noticeable.
+
So, although the identification of a person by race is far more fluid and flexible in Brazil than in the U.S., there still are racial stereotypes and prejudices. African features have been considered less desirable; Blacks have been considered socially inferior, and Whites superior (Harris 1964: 59-60). These white [[supremacist]] values seem to be an obvious legacy of [[Portugal|Portuguese]] colonization and the slave-based [[plantation system]] (Harris 1964: 54-57). The complexity of racial classifications in Brazil is reflective of the extent of [[miscegenation]] in [[Brazilian society]], a society that remains highly, but not strictly, [[social stratification|stratified]] along color lines. Henceforth, the Brazilian [[narrative]] of a perfect "post-racist" country, must be met with caution, as sociologist [[Gilberto Freyre]] demonstrated in 1933 in ''Casa Grande e Senzala''.
  
In many countries, such as [[France]], the state is legally banned from maintaining data based on race, which often makes the police issue wanted notices to the public that include labels like "dark skin complexion", etc. One of the factors that encourages this kind of circuitous wordings is that there is controversy over the actual relationship between crimes, their assigned punishments, and the division of people into the so called "races," leading officials to try to deemphasize the alleged race of suspects. In the United States, the practice of [[racial profiling]] has been ruled to be both [[unconstitutional]] and also to constitute a violation of [[civil rights]]. There is active debate regarding the cause of a marked correlation between the recorded crimes, punishments meted out, and the country's "racially divided" people. Many consider ''de facto'' [[racial profiling]] an example of [[institutional racism]] in law enforcement. The history of misuse of racial categories to adversely impact one or more groups and/or to offer protection and advantage to another has a clear impact on debate of the legitimate use of known phenotypical or genotypical characteristics tied to the presumed race of both victims and perpetrators by the government.
+
====Marketing of race: genetic lineages as social lineages====
 +
New research in molecular genetics, and the marketing of genetic identities through the analysis of one's [[Y chromosome]], [[Mitochondrial DNA|mtDNA]] or [[Autosome|autosomal DNA]], has reignited the debate surrounding race. Most of the controversy surrounds the question of how to interpret these new data, and whether conclusions based on existing data are sound. Although the vast majority of researchers endorse the view that continental groups do not constitute different subspecies, and molecular geneticists generally reject the identification of mtDNA and Y chromosomal lineages or allele clusters with "races", some anthropologists have suggested that the marketing of genetic analysis to the general public in the form of "Personalized Genetic Histories" (PGH) is leading to a new social construction of race. See above sections [[Race (classification of human beings)#Molecular lineages, Y chromosomes and mitochondrial DNA|Molecular lineages, Y chromosomes and mitochondrial DNA]] and [[Race (classification of human beings)#How much are genes shared? Clustering analyses and what they tell us|How much are genes shared? Clustering analyses and what they tell us]].
  
More recent work in racial taxonomy based on DNA cluster analysis (see [[Lewontin's Fallacy]]) has led law enforcement to narrow their search for individuals based on a range of phenotypical characteristics found consistent with DNA evidence.<ref> [http://transobj.workopolis.com/servlet/Content/fasttrack/20050625/DNA25?section=Biotech '''Molecular eyewitness: DNA gets a human face''' ''Controversial crime-scene test smacks of racial profiling, critics say''] CAROLYN ABRAHAM [[June 25]], 2005</ref>
+
Typically, a consumer of a commercial PGH service sends in a sample of DNA which is analyzed by molecular biologists and is sent a report, of which the following is a sample
 +
:"African DNA Ancestry Report"
 +
{{quotation|The subject's likely [[Haplogroup L2 (mtDNA)|haplogroup L2]] is associated with the so-called Bantu expansion from West and Central sub-Saharan Africa east and south, dated 2,000-4,000 years ago .... Between the 15th and 19th centuries C.E, the Atlantic slave trade resulted in the forced movement of approximately 13 million people from Africa, mainly to the Americas. Only approximately 11 million survived the passage and many more died in the early years of captivity. Many of these slaves were traded to the West African Cape Verde ports of embarkation through Portuguese and Arab middlemen and came from as far south as Angola. Among the African tribal groups, all Bantu-speaking, in which L2 is common are: Hausa, Kanuri, Fulfe, Songhai, Malunjin (Angola), Yoruba, Senegalese, Serer and Wolof.}}
 +
Although no single sentence in such a report is technically wrong, through the combination of these sentences, anthropologists and others have argued, the report is telling a story that connects a haplotype with a language and a group of tribes. This story is generally rejected by research scientists for the simple reason that an individual receives his or her Y chromosome or mtDNA from only one ancestor in every generation; consequently, with every generation one goes back in time, the percentage of ones ancestors it represents halves; if one goes back hundreds (let alone thousands) of years, it represents only a tiny fragment of one's ancestry. As Mark Shriver and Rick Kittles recently remarked,
 +
{{quotation|For many customers of lineage-based tests, there is a lack of understanding that their maternal and paternal lineages do not necessarily represent their entire genetic make-up. For example, an individual might have more than 85% Western European 'genomic' ancestry but still have a West African mtDNA or NRY lineage.}}
 +
Nevertheless, they acknowledge, such stories are increasingly appealing to the general public.<ref>Mark D. Shriver & Rick A. Kittles, "Genetic ancestry and the search for personalized genetic histories" in ''Nature Reviews Genetics'' 5, 611-618 </ref> Thus, in his book ''[[Blood of the Isles]]'' (published in the US and Canada as ''Saxons, Vikings and Celts: The Genetic Roots of Britain and Ireland''), however, [[Bryan Sykes]] discusses how people who have been mtDNA tested by his commercial laboratory and been found to belong to the same haplogroup have parties together because they see this as some sort of "bond", even thought these people may not actually share very much ancestry.
  
While controversial, DNA analysis has been successful in helping police identify both victims and perpetrators by giving an indication of what phenotypical characteristics to look for and what community the individual may have lived in. For example, in one case phenotypical characteristics suggested that the friends and family of an unidentified victim would be found among the Asian community, but the DNA evidence directed official attention to missing Native Americans, where her true identity was eventually confirmed.<ref>[http://www.usatoday.com/news/nation/2005-08-16-dna_x.htm DNA tests offer clues to suspect's race] By Richard Willing, USA TODAY</ref> In an attempt to avoid potentially misleading associations suggested by the word "race," this classification is called "biogeographical ancestry" (BGA),<ref>[http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PG01&s1=20040229231&OS=20040229231&RS=20040229231 Compositions and methods for inferring ancestry]</ref> but the terms for the BGA categories are similar to those used as for race. The difference is that ancestry-informative DNA markers identify continent-of-ancestry admixture, not ethnic self-identity, and provide a wide range of phenotypical characteristics such that some people in a biogeographical category will not match the stereotypical image of an individual belonging to the corresponding race. To facilitate the work of officials trying to find individuals based on the evidence of their DNA traces, firms providing the genetic analyses also provide photographs showing a full range of phenotypical characteristics of people in each biogeographical group. Of special interest to officials trying to find individuals on the basis of DNA samples that indicate a diverse genetic background is what range of phenotypical characteristics people with that general mixture of genotypical characteristics may display.
+
Through these kinds of reports, new advances in molecular genetics are being used to create or confirm stories have about [[Identity (social science)|social identities]]. Although these identities are not racial in the biological sense, they are in the cultural sense in that they link biological and cultural identities. Nadia Abu el-Haj has argued that the significance of gentetic lineages in popular conceptions of race owes to the perception that while genetic lineages, like older notions of race, suggests some idea of biological relatedness, unlike older notions of race they are not directly connected to claims about human behaviour or character. Abu el-Haj has thus argued that "postgenomics does seem to be giving race a new lease on life." Nevertheless, Abu el-Haj argues that in order to understand what it means to think of race in terms of genetic lineages or clusters, one must understand that  
 +
{{quotation|Race science was never just about classification. It presupposed a distinctive relationship between "nature" and "culture," understanding the differences in the former to ground and to generate the different kinds of persons ("natural kinds") and the distinctive stages of cultures and civilizations that inhabit the world.}}
 +
Abu el-Haj argues that genomics and the mapping of lineages and clusters liberates "the new racial science from the older one by disentangling ancestry from culture and capacity." As an example, she refers to recent work by Hammer ''et al.'', which aimed to test the claim that present-day Jews are more closely related to one another than to neighbouring non-Jewish populations. Hammer ''et. al'' found that the degree of genetic similarity among Jews shifted depending on the locus investigated, and suggested that this was the result of natural selection acting on particular loci. They therefore focused on the non-recombining Y chromosome to "circumvent some of the complications associated with selection".<ref>Hammer, M.F., A.J. Redd, E.T. Wood, M. R. Bonner, H. Jarjanazi, T. karafet, S. Santachiara-Benerecetti, A. Oppenheimer, M.A. Jobling, T. Jenkins, H. Ostrer, and B. Bonne-Tamir (2000) "Jewish and Middle Eastern Non-Jewish Populations Share a Common pool of Y-Chromosome Biallelic Haplotypes" in ''Proceedings of the National Academy of Sciences'' 97(12): 6769-6774</ref> As another example she points to work by Thomas ''et al.'', who sought to distinguish between the Y chromosomes of Jewish priests (in Judaism, membership in the priesthood is passed on through the father's line) and the Y chromosomes of non-Jews.<ref> Thomas, M. K. Skoprecski, K. Ben-Ami, H. Parfitt, T. Bradman, and D.B. Goldstein (1988) "Oriigins of Old Testament priests" in ''Nature'' 394(6689): 138-140.</ref> Abu el-Haj concluded that this new "race science" calls attention to the importance of "ancestry" (narrowly defined, as it does not include all ancestors) in some religions and in popular culture, and peoples' desire to use science to confirm their claims about ancestry; this "race science," she argues is fundamentally different from older notions of race that were used to explain differences in human behaviour or social status:
 +
{{quotation|As neutral markers, [[junk DNA]] cannot generate cultural, behavioural, or, for that matter, truly biological differences between groups .... mtDNA and Y-chromosome markers relied on in such work are not "traits" or "qualities" in the old racial sense. They do not render some populations more prone to violence, more likely to suffer psychiatric disorders, or for that matter, incapable of being fully integrated - because of their lower evolutionary development - into a European cultural world. Instead, they are "marks," signs of religious beliefs and practices .... it is via biological noncoding genetic evidence that one can demonstrate that history itself is shared, that historical traditions are (or might well be) true."<ref> Nadia Abu el-Haj (2007) Rethinking Genetic Genealogy" in ''American Ethnology'' 34(2): 224-225</ref>}}
  
Similarly, [[forensic anthropology|forensic anthropologists]] draw on highly heritable morphological features of human remains (e.g. cranial measurements) in order to aid in the identification of the body, including in terms of race. In a recent article anthropologist Norman Sauer asked, "if races don't exist, why are forensic anthropologists so good at identifying them."<ref>Sauer, Norman J. (1992) "Forensic Anthropology and the Concept of Race: If Races Don't Exist, Why are Forensic Anthropologists So Good at Identifying them" in Social Science and Medicine 34(2): 107-111. </ref> Sauer observed that the use of 19th century racial categories is widespread among forensic anthropologists:
+
On the other hand, there are tests that do not rely on molecular lineages, but rather on correlations between allele frequencies, often when allele frequencies correlate these are called clusters. Clustering analyses are less powerful than lineages because they cannot tell an historical story, they can only estimate the proportion of a person's ancestry from any given large geographical region. These sorts of tests use informative alleles called [[Ancestry-informative marker]] (AIM), which although shared across all human populations vary a great deal in frequency between groups of people living in geographically distant parts of the world. These tests use contemporary people sampled from certain parts of the world as references to determine the likely proportion of ancestry for any given individual. In a recent [[Public Service Broadcasting]] (PBS) programme on the subject of genetic ancestry testing the academic [[Henry Louis Gates]]: "wasn’t thrilled with the results (it turns out that 50 percent of his ancestors are likely European)".<ref name="Frank"/> Charles Rotimi, of Howard University's National Human Genome Center, is one of many who have highlighted the methodological flaws in such research - that "the nature or appearance of genetic clustering (grouping) of people is a function of how populations are sampled, of how criteria for boundaries between clusters are set, and of the level of resolution used" all bias the results - and concluded that people should be very cautious about relating genetic lineages or clusters to their own sense of identity.<ref>Charles Rotimi (2003) "Genetic Ancestry Tracing and the Abridan identity: A Double-Edged Sword?" in ''Developing World Bioethics'' 3(2): 153-154.</ref> (see also above section [[Race (classification of human beings)#How much are genes shared? Clustering analyses and what they tell us|How much are genes shared? Clustering analyses and what they tell us]])
  
*"In many cases there is little doubt that an individual belonged to the Negro, Caucasian, or Mongoloid racial stock."<ref>El-Najjar M. Y. and McWilliams K. R. ''Forensic Anthropology: The Structure, Morphology and Variation of Human Bone and Dentition'', p. 72. Charles C. Thomas, Springfield, 1978.</ref
+
Thus, in analyses that assign individuals to groups it becomes less apparent that self-described racial groups are reliable indicators of ancestry. One cause of the reduced power of the assignment of individuals to groups is [[wiktionary:admixture|admixture]]. For example, self-described African Americans tend to have a mix of West African and European ancestry. Shriver et al. (2003)<ref name="Shriver03" /> found that on average African Americans have ~80% African ancestry. Also, in a survey of college students who self-identified as “white” in a northeastern U.S. university, ~30% of whites had less than 90% European ancestry.<ref>[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1275602 The Use of Racial, Ethnic, and Ancestral Categories in Human Genetics Research<!-- Bot generated title -->]</ref>
*"Thus the forensic anthropologist uses the term race in the very broad sense to differentiate what are commonly known as white, black and yellow racial stocks."<ref>Skinner M. and Lazenby R. A. ''Found Human Remains: A Field Manual for the Recovery of the Recent Human Skeletons'', p. 47. Simon Fraser University, British Columbia, 1983.</ref>
+
*"In estimating race forensically, we prefer to determine if the skeleton is Negroid, or Non-Negroid. If findings favor Non-Negroid, then further study is necessary to rule out Mongoloid."<ref>Morse D., Duncan J. and Stoutamire J. (Editors) ''Handbook of Forensic Archaeology''. p. 89. Bill’s Book Store, Tallahassee, 1983. </ref>  
+
  
According to Sauer, "The assessment of these categories is based upon copious amounts of research on the relationship between biological characteristics of the living and their skeletons."  Nevertheless, he agrees with other anthropologists that race is not a valid biological taxonomic category, and that races are socially constructed.  He argued there is nevertheless a strong relationship between the phenotypic features forensic anthropologists base their identifications on, and popular racial categories.  Thus, he argued, forensic anthropologists apply a racial label to human remains because their analysis of physical morphology enables them to predict that when the person was alive, that particular racial label would have been applied to them.<ref>Sauer, Norman J. (1992) "Foren Anthropology and the Concept of Race: If Races Don't Exist, Why are Forensic Anthropologists So Good at Identifying them" in Social Science and Medicine 34(2): 107-111. </ref>
+
Stephan Palmie has responded to Abu el-Haj's claim that genetic lineages make possible a new, politically, economically, and socially benign notion of race and racial difference by suggesting that efforts to link genetic history and personal identity will inevitably "ground present social arrangements in a time-hallowed past," that is, use biology to explain cultural differences and social inequalities.<ref>Stephan Palmie (2007) "Genomic Moonlighting, Jewish Cyborgs, and Peircian Abduction" in ''American Ethnologist'' 34(2): 249.</ref>
  
 
==See also==
 
==See also==

Latest revision as of 22:44, 18 November 2010

This article is adopted from outer source (probably from Wikipedia) and it should be checked on right-wing, capitalist and/or statist bias. Please, help Anarchopedia and do it.

In it's strictest biological sense race is the taxonomic classification of organisms below the species level. Classification at the subspecific level has a controversial history, with some biologists rejecting the validity of attempts to classify below the species level altogether. In modern taxonomy the term subspecies is much more widely used, while the term "race" has persisted for humans. Although the term "race" has a specific biological meaning, it is also used in a non-biological sense to identify a variety of different socially constructed human groups, often with little biological relevance. The formal taxonomic usage of "race" requires that the taxons in question meet certain evolutionary criteria, usually on the basis of phylogenetic analysis.[1]

Conceptions of race, as well as specific ways of grouping populations, vary by culture and over time, and are often basis for various kinds of slavery, segregation, other human rights abuses and even genocides. Although "race" is a valid taxonomic concept, it is not applicable to humans due to the unusual distribution of variation within the human species, the lack of distinct evolutionary lineages and the very recent origin of our species.[1] Scientists argue that human racial categories are imprecise, arbitrary, derived from custom, have many exceptions, have many gradations, and that the numbers of races delineated vary according to the culture making the racial distinctions; they thus reject the notion that the biological classification of humans has any taxonomic rigour and validity.[2] Scientists studying human genetic variation are required by many journals to clearly define any groupings used in their analysis, for example: "Nature Genetics (Anonymous 2000), Archives of Pediatrics & Adolescent Medicine(Rivara and Finberg 2001), and the British Medical Journal (Anonymous 1996), have separately issued guidelines stating that researchers should carefully define the terms they use for populations, and some journals have asked researchers to justify their use of racial or ethnic groups in research."[3] Anthropologists contend that while some of the features by which racial categorizations are made may be based on genetic factors, the idea of race itself, and the accurate divisions of humans into groups based on selected hereditary features, are social constructs,[4][5][6][7][8][9][10]

History[edit]

Race in ancient civilizations[edit]

Given visually complex social relationships, humans presumably have always observed and speculated about the physical differences among individuals and groups. But different societies have attributed markedly different meanings to these distinctions. For example, the Ancient Egyptian sacred text called Book of Gates identifies four ethnic categories that are now conventionally labeled "Egyptians", "Asiatics", "Libyans", and "Nubians", but such distinctions tended to conflate differences as defined by physical features such as skin tone, with tribal and national identity. Classical civilizations from Rome to China tended to invest much more importance in familial or tribal affiliation than with ones physical appearance (Dikötter 1992; Goldenberg 2003). Ancient Greek and Roman authors also attempted to explain and categorize the visible differences between the peoples known to them. Such categories often also included fantastical human-like beings that were supposed to exist in far away lands. Some Roman writers adhered to an environmental determinism in which climate could affect the appearance and character of groups (Isaac 2004). But, in many ancient civilizations, individuals with widely varying physical appearances became full members of a society by growing up within that society or by adopting that society's cultural norms (Snowden 1983; Lewis 1990). Medieval models of "race" mixed Classical ideas with the notion that humanity as a whole was descended from Shem, Ham and Japheth, the three sons of Noah, producing distinct Semitic (Asian), Hamitic (African), and Japhetic (European) peoples.

Colonialism[edit]

The word "race", along with many of the ideas now associated with the term, were products of European imperialism and colonization during the "age of exploration".(Smedley 1999) As Europeans encountered people from different parts of the world, they speculated about the physical, social, and cultural differences among various human groups. The rise of the Atlantic slave trade, which gradually displaced an earlier trade in slaves from throughout the world, created a further incentive to categorize human groups in order to justify the subordination of African slaves.(Meltzer 1993) Drawing on Classical sources and upon their own internal interactions — for example, the hostility between the English and Irish was a powerful influence on early thinking about the differences between people (Takaki 1993) — Europeans began to sort themselves and others into groups associated with physical appearance and with beliefs about ingrained behaviors and capacities. A set of folk beliefs took hold that linked inherited physical differences between groups to inherited intellectual, behavioral, and moral qualities.(Banton 1977) Although similar ideas can be found in other cultures (Lewis 1990; Dikötter 1992), they appear not to have had as much influence upon their social structures as was found in Europe and the parts of the world colonized by Europeans. In particular the concept of whiteness was invented in colonial North America as a response to specific problems in the colony of Virginia in the latter half of the 17th Century, the concept allowed a "white" elite to continue to benefit economically and politically from the labour of others, both "white" and non-"white" alike.[11][12]

Early attempts at classification[edit]

The first attempts to classify humans by categories of "race" date from the 17th century, along with the development of European imperialism and colonization around the world. The first post-Classical published classification of humans into distinct races seems to be François Bernier's Nouvelle division de la terre par les différents espèces ou races qui l'habitent ("New division of Earth by the different species or races which inhabit it"), published in 1684.

17th and 18th century[edit]

According to philosopher Michel Foucault, theories of both racial and class conflict can be traced to 17th century political debates about innate differences among ethnicities. In England radicals such as John Lilburne emphasised conflicts between Saxon and Normans peoples. In France Henri de Boulainvilliers argued that the Germanic Franks possessed a natural right to leadership, in contrast to descendants of the Gauls. In the 18th century, the differences among human groups became a focus of scientific investigation (Todorov 1993). Initially, scholars focused on cataloging and describing "The Natural Varieties of Mankind," as Johann Friedrich Blumenbach entitled his 1775 text (which established five major divisions of humans, still reflected in some "racial" classifications). From the 17th through the 19th centuries, the merging of folk beliefs about group differences with scientific explanations of those differences produced what one scholar has called an "ideology of race" (Smedley 1999). According to this ideology, races are primordial, natural, enduring and distinct. It was further argued that some groups may be the result of mixture between formerly distinct populations, but that careful study could distinguish the ancestral races that had combined to produce admixed groups.

19th century[edit]

The 19th century saw attempts to reinforce "race" as a biological concept, a number of natural scientists wrote on race: Georges Cuvier, Charles Darwin, Alfred Wallace, Francis Galton, James Cowles Pritchard, Louis Agassiz, Charles Pickering NMI|Charles Pickering, and Johann Friedrich Blumenbach. As the science of anthropology took shape in the 19th century, European and American scientists increasingly sought explanations for the behavioral and cultural differences they attributed to groups (Stanton 1960). For example, using anthropometrics, invented by Francis Galton and Alphonse Bertillon, they measured the shapes and sizes of skulls and related the results to group differences in intelligence or other attributes (Lieberman 2001).

These scientists made three claims about race: first, that races are objective, naturally occurring divisions of humanity; second, that there is a strong relationship between biological races and other human phenomena (such as forms of activity and interpersonal relations and culture, and by extension the relative material success of cultures); third, that "race" is therefore a valid scientific category that can be used to explain and predict individual and group behavior. Races were distinguished by skin color, facial type, cranial profile and size, texture and color of hair. Moreover, races were almost universally considered to reflect group differences in moral character and intelligence.

The eugenics movement of the late 19th and early 20th centuries, inspired by Arthur Gobineau's An Essay on the Inequality of the Human Races (1853-1855) and Vacher de Lapouge's "anthroposociology", asserted as self-evident the biological inferiority of particular groups (Kevles 1985). In many parts of the world, the idea of race became a way of rigidly dividing groups by culture as well as by physical appearances (Hannaford 1996). Campaigns of oppression and genocide were often motivated by supposed racial differences (Horowitz 2001).

In Charles Darwin's most controversial book, The Descent of Man, he made strong suggestions of racial differences and European superiority. In Darwin's view, stronger tribes of humans always replaced weaker tribes. As savage tribes came in conflict with civilized nations, such as England, the less advanced people were destroyed. The destruction of the weaker peoples seemed desirable to many scientists at the time. It was thought that "fit" people would replace the "unfit" and human evolution would be accelerated.[13] Nevertheless, he also noted the great difficulty naturalists had in trying to decide how many "races" there actually were (Darwin was himself a monogenist on the question of race, believing that all humans were of the same species and finding "race" to be a somewhat arbitrary distinction among groups):

Man has been studied more carefully than any other animal, and yet there is the greatest possible diversity amongst capable judges whether he should be classed as a single species or race, or as two (Virey), as three (Jacquinot), as four (Kant), five (Blumenbach), six (Buffon), seven (Hunter), eight (Agassiz), eleven (Pickering), fifteen (Bory St. Vincent), sixteen (Desmoulins), twenty-two (Morton), sixty (Crawfurd), or as sixty-three, according to Burke. This diversity of judgment does not prove that the races ought not to be ranked as species, but it shews that they graduate into each other, and that it is hardly possible to discover clear distinctive characters between them.

Racism[edit]

During the Enlightenment, racial classifications were used to justify enslavement of those deemed to be of "inferior", non-White races, and thus supposedly best fitted for lives of toil under White supervision. These classifications made the distance between races seem nearly as broad as that between species, easing unsettling questions about the appropriateness of such treatment of humans. The practice was at the time generally accepted by both scientific and lay communities.

Arthur Gobineau's An Essay on the Inequality of the Human Races (1853-1855) was one of the milestones in the new racist discourse, along with Vacher de Lapouge's "anthroposociology." They posited the historical existence of national races such as German and French, branching from basal races supposed to have existed for millennia, such as the Aryan race, and believed political boundaries should mirror these supposed racial ones.

Later, one of Hitler's favorite sayings was, "Politics is applied biology". Hitler's ideas of racial purity led to unprecedented atrocities in Europe. Hitler and others enacted race laws used to persecute and murder millions of Jews, who were seen as a race. Since then, ethnic cleansing has occurred in the Balkans and Rwanda. Ethnic cleansing might be seen as another name for the tribal warfare and mass murder that has afflicted human society for ages, but, in modern times, atrocities have regularly been associated with the attempted use of racial inferiority claims to dehumanize some group. Claiming a scientific basis for negative evaluations can give greater credence to such an ideological agenda.

Racial inequality has been a concern of United States politicians and legislators since the country's founding. In the 19th century most White Americans (including abolitionists) explained racial inequality as an inevitable consequence of biological differences.Template:face Since the mid-20th century, political and civic leaders as well as scientists have debated to what extent racial inequality is cultural in origin. Some argue that current inequalities between Blacks and Whites are primarily the result of cultural and historical factors, the result of past racism, of slavery and of segregation, and so could be redressed through such programs as affirmative action and Head Start. Others work to reduce tax funding of remedial programs for minorities. They have based their advocacy on aptitude test data that, according to them, shows that racial ability differences are biological in origin and cannot be leveled even by intensive educational efforts. In electoral politics, many more ethnic minorities have recently won important offices in Western nations than in earlier times, although the highest offices tend to remain in the hands of Whites.

In his famous Letter from Birmingham Jail, the Rev. Dr. Martin Luther King Jr. observed:

History is the long and tragic story of the fact that privileged groups seldom give up their privileges voluntarily. Individuals may see the moral light and voluntarily give up their unjust posture; but as Reinhold Niebuhr has reminded us, groups are more immoral than individuals.

Dr. King's hope, expressed in his I Have a Dream speech, was that the civil rights struggle would one day produce a society where people were not "judged by the color of their skin, but by the content of their character."

Because of the identification of the concept of race with political oppression, many natural and social scientists today are wary of using race to describe human variation. Others simply find race a less useful system of categorization than some other systems. Still others, however, argue that race is of continuing utility and validity in scientific research notwithstanding the objections raised against it.

Some concepts of race are criticized as being based on mere conventions, traditions, or statistics. The number of racial categories often seems arbitrary since different authorities define different numbers of races. Often unique individual human beings seem to get ignored. The criteria used to divide the human species are also criticized as being arbitrary, and and it is claimed that they often only focus on superficial marker traits such as skin color, geographical range, and thus the traits being used pertain to a very few genes out of a very large human genome. The varying epigenetic expressions of the same genes is rarely taken into account.

Science[edit]

Humans are the most widely studied species of organism on the planet. As such the natural and social sciences have produced a great deal of data regarding human variation and how it is partitioned.

Models of human evolution[edit]

Modern science maintains that any biological concept for human "races" needs to be compatible with evolutionary theory, for example Keita et al. state: "Current systematic theory emphasizes that taxonomy at all levels should reflect evolutionary relationships."[14] Lieberman and Jackson have therefore asked what implications current models of human evolution may have for a conception of biological race.[15]

Today, all people are classified as belonging to the species Homo sapiens sapiens a single subspecies (or "race"). However, this is not the first species of hominins: the first species of genus Homo, Homo habilis, evolved in East Africa at least 2 million years ago, and members of this species populated different parts of Africa in a relatively short time. Homo erectus evolved more than 1.8 million years ago, and by 1.5 million years ago had spread throughout the Old World. Virtually all physical anthropologists agree that Homo sapiens evolved from Homo erectus. Anthropologists have been divided as to whether Homo sapiens evolved as one interconnected species from H. erectus (called the Multiregional Model, or the Regional Continuity Model), or evolved only in East Africa, and then migrated out of Africa and replaced H. erectus populations throughout the Old World (called the Recent African Origin Model (RAO)). Anthropologists continue to debate both possibilities, and the evidence is technically ambiguous as to which model is correct, although most evidence and scientists currently support RAO.

Multiregional model[edit]

Advocates of the Multiregional model, primarily Milford Wolpoff and his associates, have argued that the simultaneous evolution of H. sapiens in different parts of Europe and Asia would have been possible if there were a degree of gene flow between archaic populations.[16] Similarities of morphological features between archaic European and Chinese populations and modern H. sapiens from the same regions, Wolpoff argues, support a regional continuity only possible within the Multiregional model.[17] Wolpoff and others further argue that this model is consistent with clinal patterns of phenotypic variation (Wolpoff 1993). Lieberman and Jackson have related this theory to race with the following statement:


"The major implication for race in the multiregional evolution continuity model involves the time depth of a million or more years in which race differentiation might evolve in diverse ecological regions [...]. This must be balanced against the degree of gene flow and the transregional operation of natural selection on encephalization due to development of tools and, more broadly, culture.[18]"

Out of Africa model[edit]

See also: Recent single origin hypothesis

According to the Out of Africa Model, developed by Christopher Stringer and Peter Andrews, modern Homo sapiens evolved in Africa 200,000 years ago. H. sapiens began migrating from Africa around 50,000 years ago and eventually replaced existing hominid species in Europe and Asia.[19][20] This model has gained support by recent research using mitochondrial DNA (mtDNA). After analysing genealogy trees constructed using 133 types of mtDNA, they concluded that all were descended from a woman from Africa, dubbed Mitochondrial Eve.[21] Lieberman and Jackson have related this theory to race with the following comment:


"There are three major implications of this model for the race concept. First, the shallow time dimension minimizes the degree to which racial differences could have evolved [...]. Second, the mitochondrial DNA model presents a view that is very much different from Carleton Coon's (1962) concerning the time at which Africans passed the threshold from archaic to modern, thereby minimizing race differences and avoiding racist implications. However, the model, as interpreted by Wainscoat et al. (1989:34), does describe "a major division of human populations into an African and a Eurasian group." This conclusion could best be used to emphasize the degree of biological differences, and thereby provide support for the race concept. Third, the replacement of preexisting members of genus Homo (with little gene flow) implies several possible causes from disease epidemics to extermination. If the latter, then from a contemporary viewpoint, xenophobia or racism may have been practiced"[22]"

Comparison of the two models[edit]

Lieberman and Jackson have argued that while advocates of both the Multiregional Model and the Out of Africa Model use the word race and make racial assumptions, none define the term.[23] They conclude that "Each model has implications that both magnify and minimize the differences between races. Yet each model seems to take race and races as a conceptual reality. The net result is that those anthropologists who prefer to view races as a reality are encouraged to do so" and conclude that students of human evolution would be better off avoiding the word race, and instead describe genetic differences in terms of populations and clinal gradations.[24]

Race as subspecies[edit]

Template:further

With the advent of the modern synthesis in the early 20th century, many biologists sought to use evolutionary models and populations genetics in an attempt to formalise taxonomy below the species level. The term subspecies is used by biologists when a group of organisms are classified in such a way. In biology the term "race" is very rarely used because it is ambiguous, "'Race' is not being defined or used consistently; its referents are varied and shift depending on context. The term is often used colloquially to refer to a range of human groupings. Religious, cultural, social, national, ethnic, linguistic, genetic, geographical and anatomical groups have been and sometimes still are called 'races'".[25] Generally when it is used it is synonymous with subspecies.[25][26][27] One of the main obstacles to identifying subspecies is that, while it is a recognised taxonomic term, it has no precise definition.[26]

Some species of organisms do not appear to fragment into subgroups, while others do seem to form such subspecific groups. A monotypic species comprises a single group or rather a single subspecies. Monotypic species can occur in several ways:

  • All members of the species are very similar and cannot be sensibly divided into biologically significant subcategories.
  • The individuals vary considerably but the variation is essentially random and largely meaningless so far as genetic transmission of these variations is concerned (many plant species fit into this category, which is why horticulturists interested in preserving, say, a particular flower color avoid propagation from seed, and instead use vegetative methods like propagation from cuttings).
  • The variation among individuals is noticeable and follows a pattern, but there are no clear dividing lines among separate groups: they fade imperceptibly into one another. Such clinal variation always indicates substantial gene flow among the apparently separate groups that make up the population(s). Populations that have a steady, substantial gene flow among them are likely to represent a monotypic species even when a fair degree of genetic variation is obvious.

A polytypic species has two or more subspecies. These are separate populations that are more genetically different from one another and that are more reproductively isolated, gene flow between these populations is much reduced leading to genetic differentiation.

Morphological subspecies[edit]

Traditionally subspecies are seen as geographically isolated and genetically differentiated populations.[26] Or to put it another way "the designation 'subspecies' is used to indicate an objective degree of microevolutionary divergence"[25] One objection to this idea is that it does not identify any degree of differentiation, therefore any population that is somewhat biologically different could be considered a subspecies, even to the level of a local population. As a result it is necessary to impose a threshold on the level of difference that is required for a population to be designated a subspecies.[26] This effectively means that populations of organisms must have reached a certain measurable level of difference in order to be recognised as subspecies. Dean Amadon proposed in 1949 that subspecies would be defined according to the seventy-five percent rule which means that 75% of a population must lie outside 99% of the range of other populations for a given defining morphological character or a set of characters. The 75 percent rule still has defenders but other scholars argue that it should be replaced with 90 or 95 percent rule.[28][29][30]

When biologists study non-human populations, the standard threshold at which morphological diversity between two different populations is considered differentiated enough to be classified as subspecies is set at 70-75%. Smith et al. write:

The non-discrete nature of subspecies is evident from their definition as geographic segments of any given gonochoristic (bisexually reproducing) species differing from each other to a reasonably practical degree (e.g., at least 70-75%), but to less than totality. All subspecies are allopatric (either dichopatric [with non-contiguous ranges] or parapatric [with contiguous ranges], except for cases of circular overlap with sympatry); sympatry is conclusive evidence (except for cases of circular overlap) of allospecificity (separate specific status). Parapatric subspecies interbreed and exhibit intergradation in contact zones, but such taxa maintain the required level of distinction in one or more characters outside of those zones. Dichopatric populations are regarded as subspecies if they fail to exhibit full differentiation (i.e., exhibit overlap in variation of their differentiae up to 25-30%), even in the absence of contact (overlap exceeding 25-30% does not qualify for taxonomic recognition of either dichopatric populations or of parapatric populations outside of their zones of intergradation). Phenotypic adjustment to differing environmental conditions through natural selection is likely the primary factor in divergence of parapatric subspecies, and undoubtedly is involved in some dichopaffic subspecies. The founder effect and genetic drift are involved more in the latter than in the former.

Thus, according to the seventy-five percent rule two populations represent different subspecies if the morphological differences between them reach between 25-30%.

According to Sewall Wright, who was born in 1889, there is no question that human populations that have long inhabited separated parts of the world should, in general, be considered to be of different subspecies by the usual criterion that most individuals of such populations can be allocated correctly by inspection. It does not require a trained anthropologist to classify an array of Englishmen, West Africans, and Chinese with 100% accuracy by features, skin color, and type of hair in spite of so much variability within each of these groups that every individual can easily be distinguished from every other. However, it is customary to use the term race rather than subspecies for the major subdivisions of the human species as well as for minor ones.[31]

Humans can be correctly assigned to races at much greater than 75% accuracy on the basis of morphological traits while chimpanzee subspecies are morphologically indistinct, and difficult or impossible to classify when raised in captivity.[32][33][34]

On the other hand in practice subspecies are often defined by easily observable physical appearance, but there is not necessarily any evolutionary significance to these observed differences, so this form of classification is generally not accepted by evolutionary biologists.[26][25]

Because of the difficulty in classifying subspecies morphologically, many biologists began to reject the concept altogether, citing problems such as:[25]

  • Visible physical differences do not correlate with one another, leading to the possibility of different classifications for the same individual organisms.[25]
  • Parallel evolution can lead to the existence of the appearance of similarities between groups of organisms that are not part of the same species.[25]
  • The existence of isolated populations within previously designated subspecies.[25]
  • That the criteria for classification are arbitrary.[25]

Subspecies as isolated differentiated populations[edit]

Genetic differences between populations of organisms can be determined using the fixation index of Sewall Wright, which is often abbreviated to FST. This statistic is used to compare differences between any two given populations. For example it is often stated that the fixation index for humans is about 0.15. This means that about 85% of the variation measured in the human population is within any population, and about 15% of the variation occurs between populations.[26][25]

Citing Smith, Templeton asserts that an FST value of 0.25 or 0.30 between populations is a “standard criterion” for subspecies classification. However, Smith doesn't mention the concept of FST in his paper, he is discussing variation in morphology and discusses the 75% rule. Templeton reported that white tailed deer have an FST of about 60% and the grey wolf has an FST approaching 90% for mtDNA. The FST of grey wolves is 0.168 in autosomal loci, however.[35][36] On the other hand, in a paper reporting on the phylogenetic structure of the Leopard Panthera pardus species of Africa and Asia, Uphyrkina et al. found that 76.04% of mtDNA variation was distributed between leopard populations and 23.96% within populations, for microsatellite autosomal data, 0.358 (35.8%) of the variation was found between populations.[37] This compares to an mtDNA FST of between 0.24-0.27 (24-27%), and a genomic FST of about 0.15 (15%) for humans,[38] and an FST of 0.09-0.32 for autosomal microsatellite DNA between three Chimpanzee (Pan troglodytes) populations and of 0.51-0.68 between these three populations and the bonobo (Pan paniscus) populations.[39] The following guidelines were suggested by Sewall Wright for interpreting FST:

“The range 0 to 0.05 may be considered as indicating little genetic differentiation. The range 0.05 to 0.15 indicates moderate genetic differentiation. The range 0.15 to 0.25 indicates great genetic differentiation.

Values of FST above 0.25 indicate very great genetic differentiation.”

Wright found differences in FST for various species from 0.023-0.501.[40] For humans the FST is usually given as 0.15, of this 15% that is distributed between populations about 3-6% is distributed between geographically close populations occupying the same continent and about 6-10% is distributed between more distant continental groups, these figures vary somewhat depending on the type of genetic systems used, but the general observation has been reproduced in numerous studies.[41] This indicates that some of the between population variation for humans is found within any "race" and about 6-10% of variation is found between "races", giving an FST of 0.06-0.1 for human "races".[42]

It has also been noted that:

  • "First, compared with many other mammalian species, humans are genetically less diverse... For example, the chimpanzee subspecies living just in central and western Africa have higher levels of diversity than do humans (Ebersberger et al. 2002; Yu et al. 2003; Fischer et al. 2004)." Human variation is also distributed in an unusual and not easily understood fashion compared to other mammalian species: "The details of this distribution are impossible to describe succinctly because of the difficulty of defining a 'population,' the clinal nature of variation, and heterogeneity across the genome (Long and Kittles 2003).... This distribution of genetic variation differs from the pattern seen in many other mammalian species, for which existing data suggest greater differentiation between groups (Templeton 1998; Kittles and Weiss 2003)."[43]
  • "Since the 1980s, there have been indications that the genetic diversity of humans is low compared with that of many other species. This has been interpreted to mean that humans are a relatively young species, so populations have had relatively little time to differentiate from one another. For example, 2 randomly chosen humans differ at ~1 in 1,000 nucleotide pairs, whereas two chimpanzees differ at ~1 in 500 nucleotide pairs.[44]
  • "'Race' is a legitimate taxonomic concept that works for chimpanzees but does not apply to humans (at this time). The nonexistence of 'races' or subspecies in modern humans does not preclude substantial genetic variation that may be localized to regions or populations....The DNA of an unknown individual from one of the sampled populations would probably be correctly linked to a population. Because this identification is possible does not mean that there is a level of differentiation equal to 'races'. The genetics of Homo sapiens shows gradients of differentiation."[45]
  • "Humans are ~98.8% similar to chimpanzees at the nucleotide level and are considerably more similar to each other, differing on average at only 1 of every 500−1,000 nucleotides between chromosomes. This degree of diversity is less than what typically exists among chimpanzees.[46]
  • "The average proportion of nucleotide differences between a randomly chosen pair of humans (i.e., average nucleotide diversity, or Ï€) is consistently estimated to lie between 1 in 1,000 and 1 in 1,500. This proportion is low compared with those of many other species, from fruit flies to chimpanzees...."[47]

Population genetics: population and cline[edit]

At the beginning of the 20th century, anthropologists questioned, and eventually abandoned, the claim that biologically distinct races are isomorphic with distinct linguistic, cultural, and social groups. Shortly thereafter, the rise of population genetics provided scientists with a new understanding of the sources of phenotypic variation. This new science has led many mainstream evolutionary scientists in anthropology and biology to question the very validity of race as a scientific concept describing an objectively real phenomenon. Those who came to reject the validity of the concept of race did so for four reasons: empirical, definitional, the availability of alternative concepts, and ethical (Lieberman and Byrne 1993).

The first to challenge the concept of race on empirical grounds were anthropologists Franz Boas, who demonstrated phenotypic plasticity due to environmental factors (Boas 1912), and Ashley Montagu (1941, 1942), who relied on evidence from genetics. Zoologists Edward O. Wilson and W. Brown then challenged the concept from the perspective of general animal systematics, and further rejected the claim that "races" were equivalent to "subspecies" (Wilson and Brown 1953).

Clines[edit]

One of the crucial innovations in reconceptualizing genotypic and phenotypic variation was anthropologist C. Loring Brace's observation that such variations, insofar as it is affected by natural selection, migration, or genetic drift, are distributed along geographic gradations or clines (Brace 1964). This point called attention to a problem common to phenotype-based descriptions of races (for example, those based on hair texture and skin color): they ignore a host of other similarities and differences (for example, blood type) that do not correlate highly with the markers for race. Thus, anthropologist Frank Livingstone's conclusion that, since clines cross racial boundaries, "there are no races, only clines" (Livingstone 1962: 279).

In a response to Livingston, Theodore Dobzhansky argued that when talking about "race" one must be attentive to how the term is being used: "I agree with Dr. Livingston that if races have to be 'discrete units,' then there are no races, and if 'race' is used as an 'explanation' of the human variability, rather than vice versa, then the explanation is invalid." He further argued that one could use the term race if one distinguished between "race differences" and "the race concept." The former refers to any distinction in gene frequencies between populations; the latter is "a matter of judgment." He further observed that even when there is clinal variation, "Race differences are objectively ascertainable biological phenomena .... but it does not follow that racially distinct populations must be given racial (or subspecific) labels."[48] In short, Livingston and Dobzhansky agree that there are genetic differences among human beings; they also agree that the use of the race concept to classify people, and how the race concept is used, is a matter of social convention. They differ on whether the race concept remains a meaningful and useful social convention.

In 1964, biologists Paul Ehrlich and Holm pointed out cases where two or more clines are distributed discordantly—for example, melanin is distributed in a decreasing pattern from the equator north and south; frequencies for the haplotype for beta-S hemoglobin, on the other hand, radiate out of specific geographical points in Africa (Ehrlich and Holm 1964). As anthropologists Leonard Lieberman and Fatimah Linda Jackson observe, "Discordant patterns of heterogeneity falsify any description of a population as if it were genotypically or even phenotypically homogeneous" (Lieverman and Jackson 1995).

Patterns such as those seen in human physical and genetic variation as described above, have led to the consequence that the number and geographic location of any described races is highly dependent on the importance attributed to, and quantity of, the traits considered. For example if only skin colour and a "two race" system of classification were used, then one might classify Indigenous Australians in the same "race" as African people, and European people in the same "race" as East Asian people, but biologists and anthropologists would dispute that these classification has any scientific validity. On the other hand the greater the number of traits (or alleles) considered, the more subdivisions of humanity are detected, due to the fact that traits and gene frequencies do not always correspond to the same geographical location, or as Ossario and Duster (2005) put it:
Anthropologists long ago discovered that humans' physical traits vary gradually, with groups that are close geographic neighbors being more similar than groups that are geographically separated. This pattern of variation, known as clinal variation, is also observed for many alleles that vary from one human group to another. Another observation is that traits or alleles that vary from one group to another do not vary at the same rate. This pattern is referred to as nonconcordant variation. Because the variation of physical traits is clinal and nonconcordant, anthropologists of the late 19th and early 20th centuries discovered that the more traits and the more human groups they measured, the fewer discrete differences they observed among races and the more categories they had to create to classify human beings. The number of races observed expanded to the 30s and 50s, and eventually anthropologists concluded that there were no discrete races (Marks, 2002). Twentieth and 21st century biomedical researchers have discovered this same feature when evaluating human variation at the level of alleles and allele frequencies. Nature has not created four or five distinct, nonoverlapping genetic groups of people.[42]

Populations[edit]

Population geneticists have debated as to whether the concept of population can provide a basis for a new conception of race. In order to do this a working definition of population must be found. Surprisingly there is no generally accepted concept of population that biologists use. It has been pointed out that the concept of population is central to ecology, evolutionary biology and conservation biology, but also that most definitions of population rely on qualitative descriptions such as "a group of organisms of the same species occupying a particular space at a particular time"[49] Waples and Gaggiotti identify two broad types of definitions for populations, those that fall into an ecological paradigm and those that fall into an evolutionary paradigm. Examples such definitions are:

  • Ecological paradigm: A group of individuals of the same species that co-occur in space and time and have an opportunity to interact with each other.
  • Evolutionary paradigm: A group of individuals of the same species living in close enough proximity that any member of the group can potentially mate with any other member.[49]

Richard Lewontin, claiming that 85 percent of human variation occurs within populations, and not among populations, argued that neither "race" nor "subspecies" were appropriate or useful ways to describe populations (Lewontin 1973). Nevertheless, barriers—which may be cultural or physical— between populations can limit gene flow and increase genetic differences. Recent work by population geneticists conducting research in Europe suggests that ethnic identity can be a barrier to gene flow.[50][51][52][53] Others, such as Ernst Mayr, have argued for a notion of "geographic race" [3]. Some researchers report the variation between racial groups (measured by Sewall Wright's population structure statistic FST) accounts for as little as 5% of human genetic variation². Sewall Wright himself commented that if differences this large were seen in another species, they would be called subspecies.[54] In 2003 A. W. F. Edwards argued that cluster analysis supersedes Lewontin's arguments (see below).

These empirical challenges to the concept of race forced evolutionary sciences to reconsider their definition of race. Mid-century, anthropologist William Boyd defined race as:

A population which differs significantly from other populations in regard to the frequency of one or more of the genes it possesses. It is an arbitrary matter which, and how many, gene loci we choose to consider as a significant "constellation" (Boyd 1950).

Lieberman and Jackson (1994) have pointed out that "the weakness of this statement is that if one gene can distinguish races then the number of races is as numerous as the number of human couples reproducing." Moreover, anthropologist Stephen Molnar has suggested that the discordance of clines inevitably results in a multiplication of races that renders the concept itself useless (Molnar 1992).


The distribution of many physical traits resembles the distribution of genetic variation within and between human populations (American Association of Physical Anthropologists 1996; Keita and Kittles 1997). For example, ~90% of the variation in human head shapes occurs within every human group, and ~10% separates groups, with a greater variability of head shape among individuals with recent African ancestors (Relethford 2002).

Molecular genetics: lineages and clusters[edit]

With the recent availability of large amounts of human genetic data from many geographically distant human groups scientists have again started to investigate the relationships between people from various parts of the world. One method is to investigate DNA molecules that are passed down from mother to child (mtDNA) or from father to son (Y chromosomes), these form molecular lineages and can be informative regarding prehistoric population migrations. Alternatively autosomal alleles are investigated in an attempt to understand how much genetic material groups of people share. This work has led to a debate amongst geneticists, molecular anthropologists and medical doctors as to the validity of conceps such as "race". Some researchers insist that classifying people into groups based on ancestry may be important from medical and social policy points of view, and claim to be able to do so accurately. Others claim that individuals from different groups share far too much of their genetic material for group membership to have any medical implications. This has reignited the scientific debate over the validity of human classification and concepts of "race".

Molecular lineages, Y chromosomes and mitochondrial DNA[edit]

Mitochondria are small organelles that lie in the cytoplasm of eucaryotic cells, such as those of humans. Their primary purpose is to provide energy to the cell. Mitochondria are thought to be the vestigial remains of symbiotic bacteria that were once free living. One indication that mitochondria were once free living is that they contain a relatively small circular segment of DNA, called mitochondrial DNA (mtDNA). The overwhelming majority of a human's DNA is contained in chromosomes in the nucleus of the cell, but mtDNA is an exception. An individual inherits their cytoplasm and the organelles it contains exclusively from their mother, as these are derived from the ovum (egg cell), sperm only carry chromosomal DNA due to the necessity of maintaining motility. When a mutation arises in mtDNA molecule the mutation is therefore passed in a direct female line of descent. These mutations are derived from copying mistakes, when the DNA is copied it is possible that a single mistake occurs in the DNA sequence, these single mistakes are called single nucleotide polymorphisms (SNPs).

Human Y chromosomes are male specific sex chromosomes, any human that possesses a Y chromosome will be morphologically male. Y chromosomes are therefore passed from father to son, although Y chromosomes are situated in the cell nucleus, they only recombine with the X chromosome at the ends of the Y chromosome, the vast majority of the Y chromosome (95%) does not recombine. Therefore, as with mtDNA, when mutations (SNPs) arise in the Y chromosome they are passed on directly from father to son in a direct male line of descent.

All of these molecules are part of the ancestral haplogroup, but at some point in the past a mutation occurred in the ancestral molecule, mutation A, which produced a new lineage, this is haplogroup A and is defined by mutation A, at some more recent point in the past a new mutation, mutation B, occurred in a person carrying haplogroup A, mutation B defined haplogroup B, haplogroup B is a subgroup, or subclade of haplogroup A, both haplogrups A and B are subclades of the ancestral haplogroup.
The Y chromosome and mtDNA therefore share certain properties. Other chromosomes, autosomes and X chromosomes in women, share their genetic material (called crossing over leading to recombination) during meiosis (a special type of cell division that occurs for the purposes of sexual reproduction). Effectively this means that the genetic material from these chromosomes gets mixed up in every generation, and so any new mutations are passed down randomly from parents to offspring. The special feature that both Y chromosomes and mtDNA display is that mutations can accrue along a certain segment of both molecules and these mutations remain fixed in place on the DNA. Furthermore the historical sequence of these mutations can also be inferred. For example, if a set of ten Y chromosomes (derived from ten different men) contains a mutation, A, but only five of these chromosomes contain a second mutation, B, it must be the case that mutation B occurred after mutation A. Furthermore all ten men who carry the chromosome with mutation A are the direct male line descendants of the same man who was the first person to carry this mutation. The first man to carry mutation B was also a direct male line descendant of this man, but is also the direct male line ancestor of all men carrying mutation B. Series of mutations such as this form molecular lineages. Furthermore each mutation defines a set of specific Y chromosomes called a haplogroup. All men carrying mutation A form a single haplogroup, all men carrying mutation B are part of this haplogroup, but mutation B also defines a more recent haplogroup (which is a subgroup or subclade) of its own which men carrying only mutation A do not belong to. Both mtDNA and Y chromosomes are grouped into lineages and haplogroups, these are often presented as tree like diagrams.

Groundbreaking work by molecular biologists such as Cann et al. (1987)[55] on mtDNA produced three interesting observations relevant to race and human evolution.

Firstly, by estimating the rate at which mutations occur in mtDNA Cann et al. were able to estimate the age of the common ancestral mtDNA type: "the common ancestral mtDNA (type a) links mtDNA types that have diverged by an average of nearly 0.57%. Assuming a rate of 2%-4% per million years, this implies that the common ancestor of all surviving mtDNA types existed 140,000-290,000 years ago." This observation is robust, and this common direct female line ancestor (or mitochondrial most recent common ancestor (mtMRCA)) of all extant humans has become known as mitochondrial eve. The observation that the mtMRCA is the direct matrilineal ancestor of all living humans should not be interpreted as meaning that either she was the first anatomically modern human, nor that there were no other female humans living concurrently with her. A more reasonable explanation is that other women who lived at the same time as mtMRCA did indeed reproduce and pass their genes down to living humans, but that their mitochondrial lineages have been lost over time, probably due to random events such as producing only male children. It is impossible to know to what extent these non-extant lineages have been lost or how much they differed from the mtDNA of our mtMRCA. Cann et al.

Secondly Cann et al. postulate that their work supports an African origin for modern human mtDNA: "We infer from the tree of minimum length... that Africa is a likely source of the human mitochondrial gene pool. This inference comes from the observation that one of the two primary branches leads exclusively to African mtDNAs... while the second primary branch also leads to African mtDNAs... By postulating that the common ancestral mtDNA (type a in Fig. 3) was African, we minimize the number of intercontinental migrations needed to account for the geographic distribution of mtDNA types."

Thirdly the study shows that mtDNA types (haplogroups) do not cluster by geography, ethnicity or race, implying multiple female lineages were involved in founding modern human populations, with many closely related lineages spread geographically and many populations containing distantly related lineages: "The second implication of the tree (Fig. 3) -that each non-African population has multiple origins-can be illustrated most simply with the New Guineans. Take, as an example, mtDNA type 49, a lineage whose nearest relative is not in New Guinea, but in Asia (type 50). Asian lineage 50 is closer genealogically to this New Guinea lineage than to other Asian mtDNA lineages. Six other lineages lead exclusively to New Guinean mtDNAs, each originating at a different place in the tree (types 12, 13, 26-29, 65, 95 and 127-134 in Fig. 3). This small region of New Guinea (mainly the Eastern Highlands Province) thus seems to have been colonised by at least seven maternal lineages (Tables 2 and 3). In the same way, we calculate the minimum numbers of female lineages that colonised Australia, Asia and Europe (Tables 2 and 3). Each estimate is based on the number of region-specific clusters in the tree (Fig. 3, Tables 2 and 3). These numbers, ranging from 15 to 36 (Tables 2 and 3), will probably rise as more types of human mtDNA are discovered."

The Y chromosome is much larger than mtDNA, and is relatively homogeneous, therefore it has taken much longer to find distinct lineages and to analyse them. Conversely, because the Y chromosome is so large by comparison it can hold a great deal more genetic information. With regard to the three observations made by Cann et al. concerning mtDNA, Y chromosome studies show similar patterns. The estimate for the age of the ancestral Y chromosome for all extant Y chromosomes is given at about 70,000 years ago and is also placed in Africa, this individual is sometimes referred to as Y chromosome Adam. The difference in dates between Y chromosome Adam and mitochondrial Eve is usually attributed to a higher extinction rate for Y chromosomes due to greater differential reproductive success between individual men, that means that a small number of very successful men may produce a great many children, while a larger number of less successful men will produce far less children. Keita et al. (2004) say, with reference to Y chromosome and mtDNA and concepts of race:
Y-chromosome and mitochondrial DNA genealogies are especially interesting because they demonstrate the lack of concordance of lineages with morphology and facilitate a phylogenetic analysis. Individuals with the same morphology do not necessarily cluster with each other by lineage, and a given lineage does not include only individuals with the same trait complex (or 'racial type'). Y-chromosome DNA from Africa alone suffices to make this point. Africa contains populations whose members have a range of external phenotypes. This variation has usually been described in terms of 'race' (Caucasoids, Pygmoids, Congoids, Khoisanoids). But the Y-chromosome clade defined by the PN2 transition (PN2/M35, PN2/M2) [see haplogroup E3b and Haplogroup E3a] shatters the boundaries of phenotypically defined races and true breeding populations across a great geographical expanse21. African peoples with a range of skin colors, hair forms and physiognomies have substantial percentages of males whose Y chromosomes form closely related clades with each other, but not with others who are phenotypically similar. The individuals in the morphologically or geographically defined 'races' are not characterized by 'private' distinct lineages restricted to each of them.[56]

How much are genes shared? Clustering analyses and what they tell us[edit]

Template:Infobox multi locus allele clusters

Clustering analysis from Rosenberg (2006), there are seven clusters and most individuals belong to several clusters. Note the Kalash have majority membership in a cluster in which individuals from other groups have only a tiny membership.

Genetic data can be used to infer population structure and assign individuals to groups that often correspond with their self-identified geographical ancestry. Recently, Lynn Jorde and Steven Wooding argued that "Analysis of many loci now yields reasonably accurate estimates of genetic similarity among individuals, rather than populations. Clustering of individuals is correlated with geographic origin or ancestry."[57]

In 2003 A. W. F. Edwards wrote a paper called Lewontin's Fallacy, rebuking the argument that because most of the variation is within group classification of humans is not possible. He claimed that this conclusion ignores the fact that most of the information that distinguishes populations is hidden in the correlation structure of the data and not simply in the variation of the individual factors. Edwards concludes that "It is not true that 'racial classification is ... of virtually no genetic or taxonomic significance' or that 'you can't predict someone’s race by their genes'."[58] Likewise Neil Risch of Stanford University has proposed that self-identified race/ethnic group could be a valid means of categorization in the USA for public health and policy considerations.[59][60] While a 2002 paper by Noah Rosenberg's group makes a similar claim "The structure of human populations is relevant in various epidemiological contexts. As a result of variation in frequencies of both genetic and nongenetic risk factors, rates of disease and of such phenotypes as adverse drug response vary across populations. Further, information about a patient’s population of origin might provide health care practitioners with information about risk when direct causes of disease are unknown."[61]

Researchers such as Neil Risch and Noah Rosenberg have argued that a person's biological and cultural background may have important implications for medical treatment decisions, for example an opinion paper by Neil Risch's group in 2002 states:
Both for genetic and non-genetic reasons, we believe that racial and ethnic groups should not be assumed to be equivalent, either in terms of disease risk or drug response.....Whether African Americans, Hispanics, Native Americans, Pacific Islanders or Asians respond equally to a particular drug is an empirical question that can only be addressed by studying these groups individually.[62]
While another 2002 paper by Noah Rosenberg's group makes a similar claim
The structure of human populations is relevant in various epidemiological contexts. As a result of variation in frequencies of both genetic and nongenetic risk factors, rates of disease and of such phenotypes as adverse drug response vary across populations. Further, information about a patient’s population of origin might provide health care practitioners with information about risk when direct causes of disease are unknown.[63]
This work used samples from the Human Genome Diversity Project (HGDP), a project that has collected samples from individuals from 52 ethnic groups from various locations around the world. The HGDP has itself been criticised for collecting samples on an "ethnic group" basis, on the grounds that ethnic groups represent constructed categories rather than categories which are solely natural or biological. The molecular anthropologist Jonathan Marks states:
As any anthropologist knows, ethnic groups are categories of human invention, not given by nature. Their boundaries are porous, their existence historically ephemeral. There are the French, but no more Franks; there are the English, but no Saxons; and Navajos, but no Anasazi...we cannot really know the nature of the actual relationship of the modern group to the ancient one...The worst mistake you can make in human biology is to confuse constructed categories with natural ones. And to overload a big project with cultural categories as the overall sampling strategy would be a serious problem[64]
In the same issue of Science that published the Rosenberg data, Mary-Claire King and Arno G. Motulsky give a similar warning regarding the HGDP data:
The identification of clusters corresponding to the major geographic regions may depend on the sampling of individuals from well-defined, relatively homogeneous populations. If individuals were sampled from a worldwide 'grid' (or a worldwide grid weighted by population density), the clusters might be much less precisely defined. Does the correspondence of worldwide genetic clusters and major geographic regions suggest borders around genetic clusters analogous to the physical borders—oceans, mountain ranges, and deserts—separating geographic regions? No. Both the results of Rosenberg and colleagues and those of previous studies indicate that unlike separations between geographic regions, differences in allele frequencies are gradual.[65]

Another study by Neil Risch in 2005 used 326 microsatellite markers and self-identified race/ethnic group (SIRE), white, African-American, Asian and Hispanic (individuals involved in the study had to choose from one of these categories), to representing discrete "populations", and showed distinct and non-overlapping clustering of the white, African-American and Asian samples. The results were claimed to confirm the integrity of self-described ancestry: "We have shown a nearly perfect correspondence between genetic cluster and SIRE for major ethnic groups living in the United States, with a discrepancy rate of only 0.14%." But also warned that: "This observation does not eliminate the potential for confounding in these populations. First, there may be subgroups within the larger population group that are too small to detect by cluster analysis. Second, there may not be discrete subgrouping but continuous ancestral variation that could lead to stratification bias. For example, African Americans have a continuous range of European ancestry that would not be detected by cluster analysis but could strongly confound genetic case-control studies. (Tang, 2005)

Studies such as those by Risch and Rosenberg use a computer program called STRUCTURE to find human populations (gene clusters). It is a statistical program that works by placing individuals into one of two clusters based on their overall genetic similarity, many possible pairs of clusters are tested per individual to generate multiple clusters.[66] These populations are based on multiple genetic markers that are often shared between different human populations even over large geographic ranges. The notion of a genetic cluster is that people within the cluster share on average similar allele frequencies to each other than to those in other clusters. (Edwards, 2003 but see also infobox "Multi Locus Allele Clusters") In a test of idealised populations, the computer programme STRUCTURE was found to consistently under-estimate the numbers of populations in the data set when high migration rates between populations and slow mutation rates (such as single nucleotide polymorphisms) were considered.[67]

Nevertheless the Rosenberg et al. (2002) paper shows that individuals can be assigned to specific clusters to a high degree of accuracy. One of the underlying questions regarding the distribution of human genetic diversity is related to the degree to which genes are shared between the observed clusters. It has been observed repeatedly that the majority of variation observed in the global human population is found within populations. This variation is usually calculated using Sewall Wright's Fixation index (FST), which is an estimate of between to within group variation. The degree of human genetic variation is a little different depending upon the gene type studied, but in general it is common to claim that ~85% of genetic variation is found within groups, ~6-10% between groups within the same continent and ~6-10% is found between continental groups. For example The Human Genome Project states "two random individuals from any one group are almost as different [genetically] as any two random individuals from the entire world."[68] On the other hand Edwards (2003) claims in his essay "Lewontin's Fallacy" that: "It is not true, as Nature claimed, that 'two random individuals from any one group are almost as different as any two random individuals from the entire world'" and Risch et al. (2002) state "Two Caucasians are more similar to each other genetically than a Caucasian and an Asian." It should be noted that these statements are not the same. Risch et al. simply state that two indigenous individuals from the same geographical region are more similar to each other than either is to an indigenous individual from a different geographical region, a claim few would argue with. Jorde et al put it like this:

The picture that begins to emerge from this and other analyses of human genetic variation is that variation tends to be geographically structured, such that most individuals from the same geographic region will be more similar to one another than to individuals from a distant region.[57]

Whereas Edwards claims that it is not true that the differences between individuals from different geographical regions represent only a small proportion of the variation within the human population (he claims that within group differences between individuals are not almost as large as between group differences). Bamshad et al. (2004) used the data from Rosenberg et al. (2002) to investigate the extent of genetic differences between individuals within continental groups relative to genetic differences between individuals between continental groups. They found that though these individuals could be classified very accurately to continental clusters, there was a significant degree of genetic overlap on the individual level, to the extent that, using 377 loci, individual Europeans were about 38% of the time more genetically similar to East Asians than to other Europeans.

The results obtained by clustering analyses are dependent on several criteria:

  • The clusters produced are relative clusters and not absolute clusters, each cluster is the product of comparisons between sets of data derived for the study, results are therefore highly influenced by sampling strategies. (Edwards, 2003)
  • The geographic distribution of the populations sampled, because human genetic diversity is marked by isolation by distance, populations from geographically distant regions will form much more discrete clusters than those from geographically close regions. (Kittles and Weiss, 2003)
  • The number of genes used. The more genes used in a study the greater the resolution produced and therefore the greater number of clusters that will be identified. (Tang, 2005)


The existence of allelic clines and the observation that the bulk of human variation is continuously distributed, has led some scientists to conclude that any categorization schema attempting to partition that variation meaningfully will necessarily create artificial truncations. (Kittles & Weiss 2003). It is for this reason, Reanne Frank argues, that attempts to allocate individuals into ancestry groupings based on genetic information have yielded varying results that are highly dependent on methodological design.[69] Serre and Pääbo (2004) make a similar claim:
The absence of strong continental clustering in the human gene pool is of practical importance. It has recently been claimed that “the greatest genetic structure that exists in the human population occurs at the racial level” (Risch et al. 2002). Our results show that this is not the case, and we see no reason to assume that “races” represent any units of relevance for understanding human genetic history.
In a response to Serre and Pääbo (2004), Rosenberg et al. (2005) make three relevant observations. Firstly they maintain that their clustering analysis is robust. Secondly they agree with Serre and Pääbo that membership of multiple clusters can be interpreted as evidence for clinality (isolation by distance), though they also comment that this may also be due to admixture between neighbouring groups (small island model). Thirdly they comment that evidence of clusterdness is not evidence for any concepts of "biological race".
Serre and Pääbo argue that human genetic diversity consists of clines of variation in allele frequencies. We agree and had commented on this issue in our original paper: “In several populations, individuals had partial membership in multiple clusters, with similar membership coefficients for most individuals. These populations might reflect continuous gradations across regions or admixture of neighboring groups.” (Rosenberg, 2002) At the same time, we find that human genetic diversity consists not only of clines, but also of clusters, which STRUCTURE observes to be repeatable and robust....Our evidence for clustering should not be taken as evidence of our support of any particular concept of “biological race.” In general, representations of human genetic diversity are evaluated based on their ability to facilitate further research into such topics as human evolutionary history and the identification of medically important genotypes that vary in frequency across populations. Both clines and clusters are among the constructs that meet this standard of usefulness: for example, clines of allele frequency variation have proven important for inference about the genetic history of Europe, and clusters have been shown to be valuable for avoidance of the false positive associations that result from population structure in genetic association studies. The arguments about the existence or nonexistence of “biological races” in the absence of a specific context are largely orthogonal to the question of scientific utility, and they should not obscure the fact that, ultimately, the primary goals for studies of genetic variation in humans are to make inferences about human evolutionary history, human biology, and the genetic causes of disease.[70]
Similarly Witherspoon et al. (2007) have shown that while it is possible to classify people into genetic clusters this does not resolve the observation that any two individuals from different populations are often genetically more similar to each other than to two individuals from the same population:
Discussions of genetic differences between major human populations have long been dominated by two facts: (a) Such differences account for only a small fraction of variance in allele frequencies, but nonetheless (b) multilocus statistics assign most individuals to the correct population. This is widely understood to reflect the increased discriminatory power of multilocus statistics. Yet Bamshad et al. (2004) showed, using multilocus statistics and nearly 400 polymorphic loci, that (c) pairs of individuals from different populations are often more similar than pairs from the same population. If multilocus statistics are so powerful, then how are we to understand this finding?
All three of the claims listed above appear in disputes over the significance of human population variation and "race"...The Human Genome Project (2001, p. 812) states that "two random individuals from any one group are almost as different [genetically] as any two random individuals from the entire world."[68]

Risch et al. (2002) state that "two Caucasians are more similar to each other genetically than a Caucasian and an Asian", but Bamshad et al (2004)[71] used the same data set as Rosenberg et al. (2002) to show that Europeans are more similar to Asians 38% of the time than they are to other Europeans when only 377 microsatellite markers are analysed.

If a landmass is considered with variation distributed in two dimensions west - east. Top: Distribution of genetic variation if a small island model is considered, there are two "populations" with a narrow region of hybridisation where migration occurs, this pattern is clustered. Bottom: Distribution of genetic variation if isolation by distance is considered, all variation is gradual over the extent of the landmass, this pattern is clinal.
Percentage similarity between two individuals from different clusters when 377 microsatellite markers are considered.[72]
x Africans Europeans Asians
Europeans 36.5 — —
Asians 35.5 38.3 —
Indigenous Americans 26.1 33.4 35

In agreement with the observation of Bamshad et al. (2004), Witherspoon et al. (2007) have shown that many more than 326 or 377 microsatellite loci are required in order to show that individuals are always more similar to individuals in their own population group than to individuals in different population groups, even for three distinct populations.[68]

In 2007 Witherspoon et al. sought to investigate these apparently contradictory observations. In their paper Genetic similarities within and between human populations[68] they expand upon the observation of Bamshad et al. (2004). They show that the observed clustering of human populations into relatively discrete groups is a product of using what they call "population trait values". This means that each individual is compared to the "typical" trait for several populations, and assigned to a population based on the individual's overall similarity to one of the populations as a whole: "population membership is treated as an additive quantitative genetic trait controlled by many loci of equal effect, and individuals are divided into populations on the basis of their trait values." They therefore claim that clustering analyses cannot necessarily be used to make inferences regarding the similarity or dissimilarity of individuals between or within clusters, but only for similarities or dissimilarities of individuals to the "trait values" of any given cluster. The paper measures the rate of misclassification using these "trait values" and calls this the "population trait value misclassification rate" (CT). The paper investigates the similarities between individuals by use of what they term the "dissimilarity fraction" (ω): "the probability that a pair of individuals randomly chosen from different populations is genetically more similar than an independent pair chosen from any single population." Witherspoon et al. show that two individuals can be more genetically similar to each other than to the typical genetic type of their own respective populations, and yet be correctly assigned to their respective populations. An important observation is that the likelihood that two individuals from different populations will be more similar to each other genetically than two individuals from the same population depends on several criteria, most importantly the number of genes studied and the distinctiveness of the populations under investigation.
Given 10 loci, three distinct populations, and the full spectrum of polymorphisms, the answer is ω ~ 0.3, or nearly one-third of the time. With 100 loci, the answer is ~20% of the time and even using 1000 loci, ω ~ 10%. However, if genetic similarity is measured over many thousands of loci, the

answer becomes never when individuals are sampled from geographically separated populations.

By geographically separated populations, they mean sampling of people only from distant geographical regions while omitting intermediate regions, in this case Europe, sub-Saharan Africa, and East Asian. They continue:

On the other hand, if the entire world population were analyzed, the inclusion of many closely related and admixed populations would increase ω... In a similar vein, Romualdi et al. (2002) and Serre and Paabo (2004) have suggested that highly accurate classification of individuals from continuously sampled (and therefore closely related) populations may be impossible.... Classification methods typically make use of aggregate properties of populations, not just properties of individuals or even of pairs of individuals... The Structure classification algorithm (Pritchard et al. 2000) also relies on aggregate properties of populations, such as Hardy–Weinberg and linkage equilibrium. In contrast, the pairwise distances used to compute ω make no use of population-level information and are strongly affected by the high level of within-groups variation typical of human populations. This accounts for the difference in behavior between ω and the classification results.
Witherspoon et al. also add:
given enough genetic data, individuals can be correctly assigned to their populations of origin is compatible with the observation that most human genetic variation is found within populations, not between them. It is also compatible with our finding that, even when the most distinct populations are considered and hundreds of loci are used, individuals are frequently more similar to members of other populations than to members of their own population.

Summary of different biological definitions of race[edit]

Biological definitions of race (Long & Kittles, 2003) et al.
Concept Reference Definition
Essentialist Hooton (1926) "A great division of mankind, characterized as a group by the sharing of a certain combination of features, which have been derived from their common descent, and constitute a vague physical background, usually more or less obscured by individual variations, and realized best in a composite picture."
Taxonomic Mayr (1969) "An aggregate of phenotypically similar populations of a species, inhabiting a geographic subdivision of the range of a species, and differing taxonomically from other populations of the species."
Population Dobzhansky (1970) "Races are genetically distinct Mendelian populations. They are neither individuals nor particular genotypes, they consist of individuals who differ genetically among themselves."
Lineage Templeton (1998) "A subspecies (race) is a distinct evolutionary lineage within a species. This definition requires that a subspecies be genetically differentiated due to barriers to genetic exchange that have persisted for long periods of time; that is, the subspecies must have historical continuity in addition to current genetic differentiation."

Current views across disciplines[edit]

One result of debates over the meaning and validity of the concept "race" is that the current literature across different disciplines regarding human variation lacks consensus, though within some fields, such as biology, there is strong consensus. Some studies use the word race in its early essentialist taxonomic sense. Many others still use the term race, but use it to mean a population, clade, or haplogroup. Others eschew the concept of race altogether, and use the concept of population as a less problematical unit of analysis.

Since 1932, some college textbooks introducing physical anthropology have increasingly come to reject race as a valid concept: from 1932 to 1976, only seven out of thirty-two rejected race; from 1975 to 1984, thirteen out of thirty-three rejected race; from 1985 to 1993, thirteen out of nineteen rejected race. According to one academic journal entry, where 78 percent of the articles in the 1931 Journal of Physical Anthropology employed these or nearly synonymous terms reflecting a bio-race paradigm, only 36 percent did so in 1965, and just 28 percent did in 1996.[73] The American Anthropological Association, drawing on biological research, currently holds that "The concept of race is a social and cultural construction... . Race simply cannot be tested or proven scientifically," and that, "It is clear that human populations are not unambiguous, clearly demarcated, biologically distinct groups. The concept of 'race' has no validity ... in the human species".[6]

In an ongoing debate, some geneticists argue that race is neither a meaningful concept nor a useful heuristic device,[74] and even that genetic differences among groups are biologically meaningless,[75] on the grounds that more genetic variation exists within such races than among them, and that racial traits overlap without discrete boundaries.[76] Other geneticists, in contrast, argue that categories of self-identified race/ethnicity or biogeographic ancestry are both valid and useful,[77] that these categories correspond with clusters inferred from multilocus genetic data,[78] and that this correspondence implies that genetic factors might contribute to unexplained phenotypic variation between groups.[79]

In February, 2001, the editors of the medical journal Archives of Pediatrics and Adolescent Medicine asked authors to no longer use "race" as an explanatory variable and not to use obsolescent terms. Some other peer-reviewed journals, such as the New England Journal of Medicine and the American Journal of Public Health, have made similar endeavours.[80] Furthermore, the National Institutes of Health recently issued a program announcement for grant applications through February 1, 2006, specifically seeking researchers who can investigate and publicize among primary care physicians the detrimental effects on the nation's health of the practice of medical racial profiling using such terms. The program announcement quoted the editors of one journal as saying that, "analysis by race and ethnicity has become an analytical knee-jerk reflex."[81]

A survey, taken in 1985 (Lieberman et al. 1992), asked 1,200 American anthropologists how many disagree with the following proposition: "There are biological races in the species Homo sapiens." The responses were:

The figure for physical anthropologists at PhD granting departments was slightly higher, rising from 41% to 42%, with 50% agreeing. This survey, however, did not specify any particular definition of race (although it did clearly specify biological race within the species Homo Sapiens); it is difficult to say whether those who supported the statement thought of race in taxonomic or population terms.

The same survey, taken in 1999,[83] showed the following changing results for anthropologists:

In Poland the race concept was rejected by only 25 percent of anthropologists in 2001, although: "Unlike the U.S. anthropologists, Polish anthropologists tend to regard race as a term without taxonomic value, often as a substitute for population."[84]

In the face of these issues, some evolutionary scientists have simply abandoned the concept of race in favor of "population." What distinguishes population from previous groupings of humans by race is that it refers to a breeding population (essential to genetic calculations) and not to a biological taxon. Other evolutionary scientists have abandoned the concept of race in favor of cline (meaning, how the frequency of a trait changes along a geographic gradient). (The concepts of population and cline are not, however, mutually exclusive and both are used by many evolutionary scientists.)

According to Jonathan Marks,

By the 1970s, it had become clear that (1)most human differences were cultural; (2) what was not cultural was principally polymorphic - that is to say, found in diverse groups of people at different frequencies; (3) what was not cultural or polymorphic was principally clinal - that is to say, gradually variable over geography; and (4) what was left - the component of human diversity that was not cultural, polymorphic, or clinal - was very small.
A consensus consequently developed among anthropologists and geneticists that race as the previous generation had known it - as largely discrete, geographically distinct, gene pools - did not exist.[85]

In the face of this rejection of race by evolutionary scientists, many social scientists have replaced the word race with the word "ethnicity" to refer to self-identifying groups based on beliefs concerning shared culture, ancestry and history. Alongside empirical and conceptual problems with "race," following the Second World War, evolutionary and social scientists were acutely aware of how beliefs about race had been used to justify discrimination, apartheid, slavery, and genocide. This questioning gained momentum in the 1960s during the U.S. civil rights movement and the emergence of numerous anti-colonial movements worldwide. They thus came to understood that these justifications, even when expressed in language that sought to appear objective, were social constructs.[5]

Races as social constructions[edit]


Even as the idea of "race" was becoming a powerful organizing principle in many societies, the shortcomings of the concept were apparent. In the Old World, the gradual transition in appearances from one group to adjacent groups emphasized that "one variety of mankind does so sensibly pass into the other, that you cannot mark out the limits between them," as Blumenbach observed in his writings on human variation (Marks 1995, p. 54). As anthropologists and other evolutionary scientists have shifted away from the language of race to the term population to talk about genetic differences, Historians, anthropologists and social scientists have re-conceptualized the term "race" as a cultural category or social construct, in other words, as a particular way that some people have of talking about themselves and others. As Stephan Palmie has recently summarized, race "is not a thing but a social relation";[7] or, in the words of Katya Gibel Mevorach, "a metonym," "a human invention whose criteria for differentiation are neither universal nor fixed but have always been used to manage difference."[8] As such it cannot be a useful analytical concept; rather, the use of the term "race" itself must be analyzed. Moreover, they argue that biology will not explain why or how people use the idea of race: history and social relationships will. For example, the fact that in many parts of the United States, categories such as Hispanic or Latino are viewed to constitute a race (instead of an ethnic group) reflect this new idea of "race as a social construct". However, it may be in the interest of dominant groups to cluster Spanish speakers into a single, isolated population, rather than classifying them according to Race (as are the rest of U.S. racial groups). Especially in the context of the debate over immigration. "According to the 2000 census, two-thirds [of Hispanics] are of Mexican heritage . . . So, for practical purposes, when we speak of Hispanics and Latinos in the U.S., we’re really talking about Native Americans. . . [therefore] if being Hispanic carries any societal consequences that justify inclusion in the pantheon of great American racial minorities, they’re the result of having Native American blood. [But imagine the] the impact this would have on the illegal-immigration debate. It’s one thing to blame the fall of western civilization on illegal Mexican immigration, but quite thornier to blame it on illegal Amerindian immigration from Mexico." [86]


In the United States[edit]

see also Admixture in the United States

The immigrants to the New World came largely from widely separated regions of the Old World—western and northern Europe, western Africa, and, later, eastern Asia and southern Europe. In the Americas, the immigrant populations began to mix among themselves and with the indigenous inhabitants of the continent. In the United States, for example, most people who self-identify as African American have some European ancestors — in one analysis of genetic markers that have differing frequencies between continents, European ancestry ranged from an estimated 7% for a sample of Jamaicans to ∼23% for a sample of African Americans from New Orleans (Parra et al. 1998). Similarly, many people who identify as European American have some African or Native American ancestors, either through openly interracial marriages or through the gradual inclusion of people with mixed ancestry into the majority population. In a survey of college students who self-identified as white in a northeastern U.S. university, ∼30% were estimated to have less than 90% European ancestry.[87]

In the United States since its early history, Native Americans, African-Americans and European-Americans were classified as belonging to different races. For nearly three centuries, the criteria for membership in these groups were similar, comprising a person’s appearance, his fraction of known non-White ancestry, and his social circle.2 But the criteria for membership in these races diverged in the late 19th century. During Reconstruction, increasing numbers of Americans began to consider anyone with "one drop" of known "Black blood" to be Black regardless of appearance.3 By the early 20th century, this notion of invisible blackness was made statutory in many states and widely adopted nationwide.4 In contrast, Amerindians continue to be defined by a certain percentage of "Indian blood" (called blood quantum) due in large part to American slavery ethics. Finally, for the past century or so, to be White one had to have perceived "pure" White ancestry.

Template:2000 Race US Census map

Efforts to sort the increasingly mixed population of the United States into discrete categories generated many difficulties (Spickard 1992). By the standards used in past censuses, many millions of children born in the United States have belonged to a different race than have one of their biological parents. Efforts to track mixing between groups led to a proliferation of categories (such as "mulatto" and "octoroon") and "blood quantum" distinctions that became increasingly untethered from self-reported ancestry. A person's racial identity can change over time, and self-ascribed race can differ from assigned race (Kressin et al. 2003). Until the 2000 census, Latinos were required to identify with a single race despite the long history of mixing in Latin America; partly as a result of the confusion generated by the distinction, 32.9% (U.S. census records) of Latino respondents in the 2000 census ignored the specified racial categories and checked "some other race". (Mays et al. 2003 claim a figure of 42%)

The difference between how Native American and Black identities are defined today (blood quantum versus one-drop) has demanded explanation. According to anthropologists such as Gerald Sider, the goal of such racial designations was to concentrate power, wealth, privilege and land in the hands of Whites in a society of White hegemony and privilege (Sider 1996; see also Fields 1990). The differences have little to do with biology and far more to do with the history of racism and specific forms of White supremacy (the social, geopolitical and economic agendas of dominant Whites vis-à-vis subordinate Blacks and Native Americans) especially the different roles Blacks and Amerindians occupied in White-dominated 19th century America. The theory suggests that the blood quantum definition of Native American identity enabled Whites to acquire Amerindian lands, while the one-drop rule of Black identity enabled Whites to preserve their agricultural labor force. The contrast presumably emerged because as peoples transported far from their land and kinship ties on another continent, Black labor was relatively easy to control, thus reducing Blacks to valuable commodities as agricultural laborers. In contrast, Amerindian labor was more difficult to control; moreover, Amerindians occupied large territories that became valuable as agricultural lands, especially with the invention of new technologies such as railroads; thus, the blood quantum definition enhanced White acquisition of Amerindian lands in a doctrine of Manifest Destiny that subjected them to marginalization and multiple episodic localized campaigns of extermination.

The political economy of race had different consequences for the descendants of aboriginal Americans and African slaves. The 19th century blood quantum rule meant that it was relatively easier for a person of mixed Euro-Amerindian ancestry to be accepted as White. The offspring of only a few generations of intermarriage between Amerindians and Whites likely would not have been considered Amerindian at all (at least not in a legal sense). Amerindians could have treaty rights to land, but because an individual with one Amerindian great-grandparent no longer was classified as Amerindian, they lost any legal claim to Amerindian land. According to the theory, this enabled Whites to acquire Amerindian lands. The irony is that the same individuals who could be denied legal standing because they were "too White" to claim property rights, might still be Amerindian enough to be considered as "breeds", stigmatized for their Native American ancestry.

The 20th century one-drop rule, on the other hand, made it relatively difficult for anyone of known Black ancestry to be accepted as White. The child of an African-American sharecropper and a White person was considered Black. And, significant in terms of the economics of sharecropping, such a person also would likely be a sharecropper as well, thus adding to the employer's labor force.

In short, this theory suggests that in a 20th century economy that benefited from sharecropping, it was useful to have as many Blacks as possible. Conversely, in a 19th century nation bent on westward expansion, it was advantageous to diminish the numbers of those who could claim title to Amerindian lands by simply defining them out of existence.

It must be mentioned, however, that although some scholars of the Jim Crow period agree that the 20th century notion of invisible Blackness shifted the color line in the direction of paleness, thereby swelling the labor force in response to Southern Blacks' great migration northwards, others (Joel Williamson, C. Vann Woodward, George M. Fredrickson, Stetson Kennedy) see the one-drop rule as a simple consequence of the need to define Whiteness as being pure, thus justifying White-on-Black oppression. In any event, over the centuries when Whites wielded power over both Blacks and Amerindians and widely believed in their inherent superiority over people of color, it is no coincidence that the hardest racial group in which to prove membership was the White one.

In the United States, social and legal conventions developed over time that forced individuals of mixed ancestry into simplified racial categories (Gossett 1997). An example is the "one-drop rule" implemented in some state laws that treated anyone with a single known African American ancestor as black (Davis 2001). The decennial censuses conducted since 1790 in the United States also created an incentive to establish racial categories and fit people into those categories (Nobles 2000). In other countries in the Americas where mixing among groups was overtly more extensive, social categories have tended to be more numerous and fluid, with people moving into or out of categories on the basis of a combination of socioeconomic status, social class, ancestry, and appearance (Mörner 1967).

The term "Hispanic" as an ethnonym emerged in the 20th century with the rise of migration of laborers from American Spanish-speaking countries to the United States; it thus includes people who had been considered racially distinct (Black, White, Amerindian or other mixed groups) in their home countries. Today, the word "Latino" is often used as a synonym for "Hispanic". If these categories were, however, early on understood as racial categories, there seem to be presently a shift presenting them as ethno-linguistic categories (regardless of perceived race), something that can also been seen as a strategy by some of the categorized in order to be included in the white dominant group (as the emergence of White Hispanics points to), and at the same time as a rejection of a racial label that many see not only as disciminatory but also as not portraying properly their populational origins. In contrast to "Latino"´or "Hispanic" "Anglo" is now used in a similar way to refer to non-Hispanic White Americans or non-Hispanic European Americans, most of whom speak the English language but are not necessarily of English descent.

In Brazil[edit]

Main article: Race in Brazil

Compared to 19th century United States, 20th century Brazil was characterized by a perceived relative absence of sharply defined racial groups. According to anthropologist Marvin Harris (1989), this pattern reflects a different history and different social relations. Basically, race in Brazil was "biologized," but in a way that recognized the difference between ancestry (which determines genotype) and phenotypic differences. There, racial identity was not governed by such a rigid descent rule as in the United States. A Brazilian child was never automatically identified with the racial type of one or both parents, nor were there only a very limited number of categories to choose from. Over a dozen racial categories would be recognized in conformity with all the possible combinations of hair color, hair texture, eye color, and skin color. These types grade into each other like the colors of the spectrum, and no one category stands significantly isolated from the rest. That is, race referred preferencially to appearance, not heredity.

Through this system of racial identification, parents and children and even brothers and sisters were frequently accepted as representatives of completely different racial types. In a fishing village in the state of Bahia, an investigator showed 100 people pictures of three sisters and asked them to identify the races of each. In only six responses were the sisters identified by the same racial term. Fourteen responses used a different term for each sister (Harris 1964: 57). In another experiment nine portraits were shown to a hundred people. Forty different racial types were elicited (Harris 1964: 58). It was found, in addition, that a given Brazilian might be called by as many as thirteen different terms by other members of the community (Harris 1964: 57). These terms are spread out across practically the entire spectrum of theoretical racial types. A further consequence of the absence of a descent rule was that Brazilians apparently not only disagreed about the racial identity of specific individuals, but they also seemed to be in disagreement about the abstract meaning of the racial terms as defined by words and phrases. For example, 40% of a sample ranked moreno claro ("light" person of primarily European ancestry with dark hair) as a lighter type than mulato claro ("light" person of mixed European and African ancestry), while 60% reversed this order (Harris 1964: 58). A further note of confusion is that one person might employ different racial terms to describe the same person over a short time span (Harris 1964: 59; Goldstein 1999: 566-568).} [For a solid discussion of Brazilian racial terms, see Livio Sansone's Blackness Without Ethnicity (2003) and France Winddance Twine's Racism in a Racial Democracy (1998).] The choice of which racial description to use may vary according to the relationship (be it personal, class-based, or otherwise) between the speaker and the person concerned and moods of the individuals involved (Harris 1964: 59).

So, although the identification of a person by race is far more fluid and flexible in Brazil than in the U.S., there still are racial stereotypes and prejudices. African features have been considered less desirable; Blacks have been considered socially inferior, and Whites superior (Harris 1964: 59-60). These white supremacist values seem to be an obvious legacy of Portuguese colonization and the slave-based plantation system (Harris 1964: 54-57). The complexity of racial classifications in Brazil is reflective of the extent of miscegenation in Brazilian society, a society that remains highly, but not strictly, stratified along color lines. Henceforth, the Brazilian narrative of a perfect "post-racist" country, must be met with caution, as sociologist Gilberto Freyre demonstrated in 1933 in Casa Grande e Senzala.

Marketing of race: genetic lineages as social lineages[edit]

New research in molecular genetics, and the marketing of genetic identities through the analysis of one's Y chromosome, mtDNA or autosomal DNA, has reignited the debate surrounding race. Most of the controversy surrounds the question of how to interpret these new data, and whether conclusions based on existing data are sound. Although the vast majority of researchers endorse the view that continental groups do not constitute different subspecies, and molecular geneticists generally reject the identification of mtDNA and Y chromosomal lineages or allele clusters with "races", some anthropologists have suggested that the marketing of genetic analysis to the general public in the form of "Personalized Genetic Histories" (PGH) is leading to a new social construction of race. See above sections Molecular lineages, Y chromosomes and mitochondrial DNA and How much are genes shared? Clustering analyses and what they tell us.

Typically, a consumer of a commercial PGH service sends in a sample of DNA which is analyzed by molecular biologists and is sent a report, of which the following is a sample

"African DNA Ancestry Report"
The subject's likely haplogroup L2 is associated with the so-called Bantu expansion from West and Central sub-Saharan Africa east and south, dated 2,000-4,000 years ago .... Between the 15th and 19th centuries C.E, the Atlantic slave trade resulted in the forced movement of approximately 13 million people from Africa, mainly to the Americas. Only approximately 11 million survived the passage and many more died in the early years of captivity. Many of these slaves were traded to the West African Cape Verde ports of embarkation through Portuguese and Arab middlemen and came from as far south as Angola. Among the African tribal groups, all Bantu-speaking, in which L2 is common are: Hausa, Kanuri, Fulfe, Songhai, Malunjin (Angola), Yoruba, Senegalese, Serer and Wolof.

Although no single sentence in such a report is technically wrong, through the combination of these sentences, anthropologists and others have argued, the report is telling a story that connects a haplotype with a language and a group of tribes. This story is generally rejected by research scientists for the simple reason that an individual receives his or her Y chromosome or mtDNA from only one ancestor in every generation; consequently, with every generation one goes back in time, the percentage of ones ancestors it represents halves; if one goes back hundreds (let alone thousands) of years, it represents only a tiny fragment of one's ancestry. As Mark Shriver and Rick Kittles recently remarked,

For many customers of lineage-based tests, there is a lack of understanding that their maternal and paternal lineages do not necessarily represent their entire genetic make-up. For example, an individual might have more than 85% Western European 'genomic' ancestry but still have a West African mtDNA or NRY lineage.

Nevertheless, they acknowledge, such stories are increasingly appealing to the general public.[88] Thus, in his book Blood of the Isles (published in the US and Canada as Saxons, Vikings and Celts: The Genetic Roots of Britain and Ireland), however, Bryan Sykes discusses how people who have been mtDNA tested by his commercial laboratory and been found to belong to the same haplogroup have parties together because they see this as some sort of "bond", even thought these people may not actually share very much ancestry.

Through these kinds of reports, new advances in molecular genetics are being used to create or confirm stories have about social identities. Although these identities are not racial in the biological sense, they are in the cultural sense in that they link biological and cultural identities. Nadia Abu el-Haj has argued that the significance of gentetic lineages in popular conceptions of race owes to the perception that while genetic lineages, like older notions of race, suggests some idea of biological relatedness, unlike older notions of race they are not directly connected to claims about human behaviour or character. Abu el-Haj has thus argued that "postgenomics does seem to be giving race a new lease on life." Nevertheless, Abu el-Haj argues that in order to understand what it means to think of race in terms of genetic lineages or clusters, one must understand that

Race science was never just about classification. It presupposed a distinctive relationship between "nature" and "culture," understanding the differences in the former to ground and to generate the different kinds of persons ("natural kinds") and the distinctive stages of cultures and civilizations that inhabit the world.

Abu el-Haj argues that genomics and the mapping of lineages and clusters liberates "the new racial science from the older one by disentangling ancestry from culture and capacity." As an example, she refers to recent work by Hammer et al., which aimed to test the claim that present-day Jews are more closely related to one another than to neighbouring non-Jewish populations. Hammer et. al found that the degree of genetic similarity among Jews shifted depending on the locus investigated, and suggested that this was the result of natural selection acting on particular loci. They therefore focused on the non-recombining Y chromosome to "circumvent some of the complications associated with selection".[89] As another example she points to work by Thomas et al., who sought to distinguish between the Y chromosomes of Jewish priests (in Judaism, membership in the priesthood is passed on through the father's line) and the Y chromosomes of non-Jews.[90] Abu el-Haj concluded that this new "race science" calls attention to the importance of "ancestry" (narrowly defined, as it does not include all ancestors) in some religions and in popular culture, and peoples' desire to use science to confirm their claims about ancestry; this "race science," she argues is fundamentally different from older notions of race that were used to explain differences in human behaviour or social status:

As neutral markers, junk DNA cannot generate cultural, behavioural, or, for that matter, truly biological differences between groups .... mtDNA and Y-chromosome markers relied on in such work are not "traits" or "qualities" in the old racial sense. They do not render some populations more prone to violence, more likely to suffer psychiatric disorders, or for that matter, incapable of being fully integrated - because of their lower evolutionary development - into a European cultural world. Instead, they are "marks," signs of religious beliefs and practices .... it is via biological noncoding genetic evidence that one can demonstrate that history itself is shared, that historical traditions are (or might well be) true."[91]

On the other hand, there are tests that do not rely on molecular lineages, but rather on correlations between allele frequencies, often when allele frequencies correlate these are called clusters. Clustering analyses are less powerful than lineages because they cannot tell an historical story, they can only estimate the proportion of a person's ancestry from any given large geographical region. These sorts of tests use informative alleles called Ancestry-informative marker (AIM), which although shared across all human populations vary a great deal in frequency between groups of people living in geographically distant parts of the world. These tests use contemporary people sampled from certain parts of the world as references to determine the likely proportion of ancestry for any given individual. In a recent Public Service Broadcasting (PBS) programme on the subject of genetic ancestry testing the academic Henry Louis Gates: "wasn’t thrilled with the results (it turns out that 50 percent of his ancestors are likely European)".[69] Charles Rotimi, of Howard University's National Human Genome Center, is one of many who have highlighted the methodological flaws in such research - that "the nature or appearance of genetic clustering (grouping) of people is a function of how populations are sampled, of how criteria for boundaries between clusters are set, and of the level of resolution used" all bias the results - and concluded that people should be very cautious about relating genetic lineages or clusters to their own sense of identity.[92] (see also above section How much are genes shared? Clustering analyses and what they tell us)

Thus, in analyses that assign individuals to groups it becomes less apparent that self-described racial groups are reliable indicators of ancestry. One cause of the reduced power of the assignment of individuals to groups is admixture. For example, self-described African Americans tend to have a mix of West African and European ancestry. Shriver et al. (2003)[87] found that on average African Americans have ~80% African ancestry. Also, in a survey of college students who self-identified as “white” in a northeastern U.S. university, ~30% of whites had less than 90% European ancestry.[93]

Stephan Palmie has responded to Abu el-Haj's claim that genetic lineages make possible a new, politically, economically, and socially benign notion of race and racial difference by suggesting that efforts to link genetic history and personal identity will inevitably "ground present social arrangements in a time-hallowed past," that is, use biology to explain cultural differences and social inequalities.[94]

See also[edit]

Footnotes[edit]

  1. 1.0 1.1 S O Y Keita, R A Kittles, C D M Royal, G E Bonney, P Furbert-Harris, G M Dunston & C N Rotimi, 2004 "Conceptualizing human variation" in Nature Genetics 36, S17 - S20 Conceptualizing human variation
  2. For example this statement expressing the official viewpoint of the American Anthropological Association at their webpage: "Evidence from the analysis of genetics (e.g., DNA) indicates that most physical variation lies within so-called racial groups. This means that there is greater variation within "racial" groups than between them."
  3. The Use of Racial, Ethnic, and Ancestral Categories in Human Genetics Research Race, Ethnicity, and Genetics Working Group. Am J Hum Genet. (2005) 77(4): 519–532.
  4. Thompson, William and Joseph Hickey (2005) Society in Focus. Pearson, Boston, MA ISBN0-205-41365-X
  5. 5.0 5.1 Gordon 1964
  6. 6.0 6.1 American Anthropological Association Statement on "Race"
  7. 7.0 7.1 Palmie, Stephan (2007) "Genomics, Divination, 'Racecraft'" in American Ethnologist 34(2): 214
  8. 8.0 8.1 Mevorach, Katya Gibel (2007) "Race, Racism and Academic Complicity" in American Ethnologist 34(2): 239-240
  9. Daniel A. Segal 'The European': Allegories of Racial Purity Anthropology Today, Vol. 7, No. 5 (Oct., 1991), pp. 7-9 doi:10.2307/3032780
  10. Bindon, Jim. University of Alabama. "Post World War II". 2005. August 28, 2006.
  11. Helfand, Judy. "Constructing Whiteness" Race, Racism and the Law, University of Dayton
  12. Sweet, Frank B. (2005) "Why Did Virginia’s Rulers Invent a Color Line?". Back in Tyme Essays, History of the US Color Line. Back in Tyme publishing.
  13. Charles Darwin, The Descent of Man, Chapter 7 - On the Races of Man. Consider, for instance, the following excerpt: "We thus see that many of the wilder races of man are apt to suffer much in health when subjected to changed conditions or habits of life, and not exclusively from being transported to a new climate. Mere alterations in habits, which do not appear injurious in themselves, seem to have this same effect; and in several cases the children are particularly liable to suffer. It has often been said, as Mr. Macnamara remarks, that man can resist with impunity the greatest diversities of climate and other changes; but this is true only of the civilised races."
  14. Cite error: Invalid <ref> tag; no text was provided for refs named keita
  15. Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ­American Anthropologist Vol. 97, No. 2, pp. 232-234
  16. Thorne, Alan, and Milford Wolpoff (1992) "The Multiregional Evolution of humans" in Scientific American, April 76-93; Smith, Fred and Frank Spencer, eds (1984) The Origin of Modern Humans
  17. Robert H. Lavenda and Emily A. Shultz Anthropology, what does it mean to be human? Oxford (New York:2008) 132.
  18. Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ­American Anthropologist Vol. 97, No. 2, pp. 237
  19. Modern Humans Came Out of Africa, "Definitive" Study Says
  20. Christopher Stringer and Peter Andrews (1988) "Genetic and Fossil Evidence for the Origin of Modern Humans" in Science 239: 1263-1268
  21. Rebecca L. Cann, Mark Stoneking, Allan C. Wilson (1987) "Mitochondrial DNA and human evolution" in Nature 325: 31-36)
  22. Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ­American Anthropologist Vol. 97, No. 2, pp. 235–236
  23. Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ­American Anthropologist Vol. 97, No. 2, pp. 237
  24. Leonard Lieberman and Fatimah Linda C. Jackson (1995) "Race and Three Models of Human Origin" in ­American Anthropologist Vol. 97, No. 2, pp. 239
  25. 25.0 25.1 25.2 25.3 25.4 25.5 25.6 25.7 25.8 25.9 Keita et al. 2004
  26. 26.0 26.1 26.2 26.3 26.4 26.5 Templeton, 1998
  27. Long and Kittles, 2003
  28. AMADON, D. 1949. The seventy-five percent rule for subspecies. Condor 51:250-258.
  29. MAYR, E. 1969. Principles of Systematic Zoology. McGraw-Hill, New York.
  30. Patten MA & Unitt P. (2002). Diagnosability versus mean differences of sage sparrow subspecies. Auk. vol 119, no 1. p. 26-35.
  31. Wright, S. 1978. Evolution and the Genetics of Populations, Vol. 4, Variability Within and Among Natural Populations. Univ. Chicago Press, Chicago, Illinois. p. 438
  32. Stone, A.C., R. Griffiths, S. Zegura, M. Hammer. 2002. High levels of Y chromosome nucleotide diversity in the genus Pan. Proceedings of the National Academy of Sciences 99:43-48.
  33. 66. Kaessmann, H., Wiebe, V., Paabo, S. 1999. Extensive Nuclear DNA Sequence Diversity Among Chimpanzees. Science 286:1159-1162.
  34. Wright. 1978. p. 439
  35. Wayne, R.K., Lehmann, N., Allard, M.W., Honeycutt, R.L. 1992. Mitochondrial DNA Variability of the Gray Wolf: Genetic Consequences of Population Decline and Habitat Fragmentation. Conservation Biology 6:559-569.
  36. 82. Roy, M.S., Gefen, E., Smith, D., Ostrander, E.A., Wayne, R.K. 1994. Patterns of Differentiation and Hybridization in North American Wolflike Canids, Revealed by Analysis of Microsatellite Loci. Molecular Biology and Evolution 11:553-570.
  37. Olga Uphyrkina, Warren E. Johnson, Howard Quigley, Dale Miquelle, Laurie Marker, Mitchel Bush, Stephen J. O'Brien (2001) Phylogenetics, genome diversity and origin of modern leopard, Panthera pardus' Molecular Ecology 10 (11), 2617–2633. Template:doi
  38. Sarah A Tishkoff and Kenneth K Kidd (2004) Implications of biogeography of human populations for 'race' and medicine Nature Genetics 36, S21 - S27 (2004) Template:doi
  39. Celine Becquet, Nick Patterson, Anne C Stone, Molly Przeworski, and David Reich (2007) Genetic Structure of Chimpanzee Populations. PLoS Genet. 3(4): e66.Template:doi.
  40. Joseph L. Graves, (2006) What We Know and What We Don’t Know: Human Genetic Variation and the Social Construction of Race from Race and Genomics
  41. Lewontin, 2006
  42. 42.0 42.1 Pilar Ossorio and Troy Duster (2006) Race and Genetics Controversies in Biomedical, Behavioral, and Forensic Sciences American Psychologist 60 115–128 Template:doi
  43. The Use of Racial, Ethnic, and Ancestral Categories in Human Genetics Research by Race, Ethnicity, and Genetics Working Group. Am J Hum Genet. 2005 77(4): 519–532.
  44. DECONSTRUCTING THE RELATIONSHIP BETWEEN GENETICS AND RACE Michael Bamshad, Stephen Wooding, Benjamin A. Salisbury and J. Claiborne Stephens. Nature Genetics (2004) 5:598-609
  45. Conceptualizing human variation by S O Y Keita, 2, R A Kittles1, C D M Royal, G E Bonney, P Furbert-Harris, G M Dunston & C N Rotimi. Nature Genetics 36, S17 - S20 (2004)
  46. Implications of biogeography of human populations for 'race' and medicine by Sarah A Tishkoff & Kenneth K Kidd. Nature Genetics 36, S21 - S27 (2004)
  47. Genetic variation, classification and 'race' by Lynn B Jorde & Stephen P Wooding. Nature Genetics' 36, S28 - S33 (2004)
  48. Theodosious Dobzhansky "Comment" in Current Anthropology 3(3): 279-280
  49. 49.0 49.1 What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. by ROBIN S. WAPLES and OSCAR GAGGIOTTI. Molecular Ecology (2006) 15, 1419–1439. Template:doi
  50. Koertvelyessy, TA and MT Nettleship 1996 Ethnicity and mating structure in Southwestern Hungary. Rivista di Antropologia (Roma) 74:45-53
  51. Koertvelyessy, T 1995 Etnicity, isonymic relationships, and biological distance in Northeastern Hungary. Homo 46/1:1-9.
  52. Pettener. D 1990 Temporal trends in marital structure and isonymy in S. Paolo Albanese, Italy. Human Biology 6:837-851.
  53. Biondi, G, P Raspe, GW Lasker, and GGN Mascie-Taylor 1990 Relationships estimated by isonymy among the Italo-Greco villages of southern Italy. Human Biology 62:649-663.
  54. Wright S. 1978. Evolution and the Genetics of Populations, Vol. 4, Variability Within and Among Natural Populations. Chicago, II: Univ. Chicago Press
  55. Rebecca L. Cann, Mark Stoneking, Allan C. Wilson (1987) Mitochondrial DNA and human evolution in Nature 325: 31-36)
  56. Conceptualizing human variation (2004) by S O Y Keita, R A Kittles1, C D M Royal, G E Bonney, P Furbert-Harris, G M Dunston & C N Rotimi in Nature Genetics 36, S17 - S20
  57. 57.0 57.1 Lynn B Jorde & Stephen P Wooding, 2004, "Genetic variation, classification and 'race'" in Nature Genetics 36, S28 - S33 Genetic variation, classification and 'race'
  58. "Human genetic diversity: Lewontin's fallacy.", Edwards AW., Gonville and Caius College, Cambridge, in PubMed, 2003 Aug;25(8):798-801.
  59. Genetic Structure, Self-Identified Race/Ethnicity, and Confounding in Case-Control Association Studies by Hua Tang, Tom Quertermous, Beatriz Rodriguez, Sharon L. R. Kardia, Xiaofeng Zhu, Andrew Brown, James S. Pankow, Michael A. Province, Steven C. Hunt, Eric Boerwinkle, Nicholas J. Schork, and Neil J. Risch Am J Hum Genet. 2005 February; 76(2): 268–275.
  60. Categorization of humans in biomedical research: genes, race and disease by Neil Risch, Esteban Burchard, Elad Ziv and Hua Tang] Genome Biology 2002, 3:comment
  61. Noah A. Rosenberg, Jonathan K. Pritchard, James L. Weber, Howard M. Cann, Kenneth K. Kidd, Lev A. Zhivotovsky, Marcus W. Feldman. Genetic Structure of Human Populations. Science (2002) 298:2381-5
  62. Risch, N., Burchard, E., Ziv, E. & Tang, H. Categorization of humans in biomedical research: genes, race, and disease. Genome Biol. 3, 1−12 (2003)
  63. Noah A. Rosenberg, Jonathan K. Pritchard, James L. Weber, Howard M. Cann, Kenneth K. Kidd, Lev A. Zhivotovsky, Marcus W. Feldman. Genetic Structure of Human Populations. Science (2002) 298:2381-5
  64. Marks, J. (2002) What it means to be 98% chimpanzee (paperback ed.) pp.202-203. Berkley. University of California Press.
  65. Mary-Claire King and Arno G. Motulsky Mapping Human History. Science (2002) 298: pp. 2342 - 2343. Template:DOI
  66. "Genetic Similarities Within and Between Human Populations" (2007) by D.J. Witherspoon, S. Wooding, A.R. Rogers, E.E. Marchani, W.S. Watkins, M.A. Batzer and L.B. Jorde. Genetics. 176(1): 351–359.
  67. Wapples, R., S. and Gaggiotti, O. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity Molecular Ecology (2006) 15: 1419–1439. Template:doi
  68. 68.0 68.1 68.2 68.3 Genetic Similarities Within and Between Human Populations by D. J. Witherspoon, S. Wooding, A. R. Rogers, E. E. Marchani, W. S. Watkins, M. A. Batzer, and L. B. Jorde Genetics. 2007 May; 176(1): 351–359.
  69. 69.0 69.1 Back with a Vengeance: the Reemergence of a Biological Conceptualization of Race in Research on Race/Ethnic Disparities in Health Reanne Frank
  70. Rosenberg NA, Mahajan S, Ramachandran S, Zhao C, Pritchard JK, et al. (2005) Clines, Clusters, and the Effect of Study Design on the Inference of Human Population Structure. PLoS Genet 1(6): e70 Template:doi
  71. Bamshad, Wooding, Salisbury§ and Stephens (2004) Deconstructing the relationship between genetics and race. Nature Reviews Genetics 8:598-609. Template:doi
  72. The table gives the percentage likelihood that two individuals from different clusters are genetically more similar to each other than to someone from their own population when 377 microsatellite markers are considered from Bamshad et al. (2004)Template:doi, original data from Rosenberg (2002).
  73. Leonard Lieberman, Rodney C. Kirk, and Alice Littlefield, "Perishing Paradigm: Race—1931-99," American Anthropologist 105, no. 1 (2003): 110-13. A following article in the same issue, by Mat Cartmill and Kaye Brown, questions the precise rate of decline, but from their biased perspective agree that the Negroid/Caucasoid/Mongoloid paradigm has fallen into near-total disfavor.
  74. (Wilson et al. 2001), (Cooper et al. 2003) (given in summary by Bamshad et al. 2004 p.599)
  75. (Schwartz 2001), (Stephens 2003) (given in summary by Bamshad et al. 2004 p.599)
  76. (Smedley and Smedley 2005), (Helms et al. 2005), [1]. Lewontin, for example argues that there is no biological basis for race on the basis of research indicating that more genetic variation exists within such races than among them (Lewontin 1972).
  77. (Risch et al. 2002), (Bamshad 2005). Neil Risch argues: "One could make the same arguments about sex and age! ... you can undermine any definitional system... In a recent study... we actually had a higher discordance rate between self-reported sex and markers on the X chromosome [than] between genetic structure [based on microsatellite markers] versus [racial] self-description, [which had a] 99.9% concordance... So you could argue that sex is also a problematic category. And there are differences between sex and gender; self-identification may not be correlated with biology perfectly. And there is sexism. And you can talk about age the same way. A person's chronological age does not correspond perfectly with his biological age for a variety of reasons, both inherited and non-inherited. Perhaps just using someone's actual birth year is not a very good way of measuring age. Does that mean we should throw it out? ... Any category you come up with is going to be imperfect, but that doesn't preclude you from using it or the fact that it has utility"(Gitschier 2005).
  78. (Harpending and Rogers 2000), (Bamshad et al. 2003), (Edwards 2003), (Bamshad et al. 2004), (Tang et al. 2005), (Rosenberg et al. 2005): "If enough markers are used... individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe".
  79. (Mountain and Risch 2004)
  80. Frederick P. Rivara and Laurence Finberg, "Use of the Terms Race and Ethnicity," Archives of Pediatrics & Adolescent Medicine 155, no. 2 (2001): 119. For similar author's guidelines, see Robert S. Schwartz, "Racial Profiling in Medical Research," The New England Journal of Medicine, 344 (no, 18, May 3, 2001); M.T. Fullilove, "Abandoning 'Race' as a Variable in Public Health Research: An Idea Whose Time has Come," American Journal of Public Health, 88 (1998), 1297-1298; and R. Bhopal and L. Donaldson, "White, European, Western, Caucasian, or What? Inappropriate Labeling in Research on Race, Ethnicity, and Health." American Journal of Public Health, 88 (1998), 1303-1307.
  81. See program announcement and requests for grant applications at the NIH website, at nih.gov.
  82. Bindon, Jim. University of Alabama. "Post World War II". 2005. August 28, 2006.
  83. ssc.uwo.ca
  84. "'Race'—Still an Issue for Physical Anthropology? Results of Polish Studies Seen in the Light of the U.S. Findings" by Katarzyna A. Kaszycka. American Anthropologist March 2003, Vol. 105, No. 1, pp. 116-124
  85. Marks, Jonathan (2007) "Grand Anthropological Themes" in American Ethnologist 34(2): 234, cf. Marks, Jonathan (1995) Human Biodiversity: Genes, Race, and History. New York: Aldine de Gruyter
  86. Separated by a common language: The case of the white Hispanic By Alfredo Tryferis [2]
  87. 87.0 87.1 Shriver et al. 2003
  88. Mark D. Shriver & Rick A. Kittles, "Genetic ancestry and the search for personalized genetic histories" in Nature Reviews Genetics 5, 611-618
  89. Hammer, M.F., A.J. Redd, E.T. Wood, M. R. Bonner, H. Jarjanazi, T. karafet, S. Santachiara-Benerecetti, A. Oppenheimer, M.A. Jobling, T. Jenkins, H. Ostrer, and B. Bonne-Tamir (2000) "Jewish and Middle Eastern Non-Jewish Populations Share a Common pool of Y-Chromosome Biallelic Haplotypes" in Proceedings of the National Academy of Sciences 97(12): 6769-6774
  90. Thomas, M. K. Skoprecski, K. Ben-Ami, H. Parfitt, T. Bradman, and D.B. Goldstein (1988) "Oriigins of Old Testament priests" in Nature 394(6689): 138-140.
  91. Nadia Abu el-Haj (2007) Rethinking Genetic Genealogy" in American Ethnology 34(2): 224-225
  92. Charles Rotimi (2003) "Genetic Ancestry Tracing and the Abridan identity: A Double-Edged Sword?" in Developing World Bioethics 3(2): 153-154.
  93. The Use of Racial, Ethnic, and Ancestral Categories in Human Genetics Research
  94. Stephan Palmie (2007) "Genomic Moonlighting, Jewish Cyborgs, and Peircian Abduction" in American Ethnologist 34(2): 249.

Bibliography[edit]

  • Abizadeh A (2001) "Ethnicity, Race, and a Possible Humanity" World Order 33.1: 23-34.
  • American Association of Physical Anthropologists (1996) AAPA statement on biological aspects of race. Am J Phys Anthropol 101:569–570
  • Anonymous (1996) Style matters: ethnicity, race, and culture: guidelines for research, audit, and publication. BMJ 312:1094
  • ——— (2000) Census, race, and science. Nat Genet 24:97–98
  • ——— (2004) The unexamined "Caucasian." Nat Genet 36:541
  • Banton M (1977) The idea of race. Westview Press, Boulder
  • Bhopal R (1997) Is research into ethnicity and health racist, unsound, or important science? BMJ 314:1751–1756
  • Boas 1912 "Change in Bodily Form of Descendants of Immigrants" in American Anthropologist 14: 530-562
  • Bonham V, Warshauer-Baker E, Collins FS (2005) The complexity of the constructs. Am Psychol 60:9–15
  • Bowler JM, Johnston H, Olley JM, Prescott JR, Roberts RG, Shawcross W, Spooner NA (2003) New ages of human occupation and climatic change at Lake Mungo, Australia. Nature 421:837–840
  • Brace 1964 "A Non-racial Approach Toward the Understanding of Human Diversity" in The Concept of Race, ed. Ashley Montagu
  • Braun L (2002) Race, ethnicity, and health: can genetics explain disparities? Perspect Biol Med 45:159–174
  • Brodwin P (2002) Genetics, identity, and the anthropology of essentialism. Anthropol Quart 75:323–330
  • Burchard EG, Ziv E, Coyle N, Gomez SL, Tang H, Karter AJ, Mountain JL, Perez-Stable EJ, Sheppard D, Risch N (2003) The importance of race and ethnic background in biomedical research and clinical practice. N Engl J Med 348:1170–1175
  • Calafell F (2003) Classifying humans. Nat Genet 33:435–436
  • Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4:579–591 * Caspari, Rachel 2003 "From Types to Populations: a Century of Race, Physical Anthropology, and the American Anthropological Association," in American Anthropologist 105(1): 65-76
  • Cardon LR, Palmer LJ (2003) Population stratification and spurious allelic association. Lancet 361:598–604
  • Cavalli-Sforza, Luigi Luca; et al (1995). The History and Geography of Human Genes. Princeton University Press.
  • Collins-Schramm HE, et al., (2004) Mexican American ancestry-informative markers: examination of population structure and marker characteristics in European Americans, Mexican Americans, Amerindians and Asian. Human Genetics 114:263-71
  • Cooper RS, Kaufman JS, Ward R (2003) Race and genomics. N Engl J Med 348:1166–1170
  • Dobzhansky, T. (1970). Genetics of the Evolutionary Process. New York, NY: Columbia University Press.
  • ——— (2005) Race and reification in science. Science 307:1050–1051
  • Ehrlich and Holm 1964 "A Biological View of Race" in The Concept of Race, ed. Ashley Montagu
  • Frayer, David, M. Wolpoff, A. Thorne, F. Smith, G. Pope "Theories of Modern Origins: The Paleontological Test" in American Anthropologist 95(1) 14-50
  • Gluckman PD, Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305:1733–1736
  • Goldstein, Donna (1999) "'Interracial' Sex and Sexual Democracy in Brazil: Twin Concepts" in American Anthropologist 101(3): 563-578.
  • Goldstein DB, Chikhi L (2002) Human migrations and population structure: what we know and why it matters. Ann Rev Genomics Hum Genet 3:129–152
  • Guthrie RD (1996) The mammoth steppe and the origin of mongoloids and their dispersal. In: Akazawa T, Szathmary E (eds) Prehistoric Mongoloid dispersals. Oxford University Press, New York, pp 172–186
  • Hannaford I (1996) Race: the history of an idea in the West. Johns Hopkins University Press, Baltimore
  • Harpending H, Rogers A (2000) Genetic perspectives on human origins and differentiation. Annu Rev Genomics Hum Genet 1:361–385
  • Harris, Marvin (1980) Patterns of Race in the Americas. Greenwood Press
  • Hooton, E.A. (1926). Methods of racial analysis. Science 63, 75–81.
  • Hutchinson J, Smith AD (eds) (1996) Ethnicity. Oxford University Press, New York
  • Jablonski NG (2004) The evolution of human skin and skin color. Annu Rev Anthropol 33:585–623
  • Keita SOY, Kittles RA (1997) The persistence of racial thinking and the myth of racial divergence. Am Anthropol 99:534–544
  • Klein RG (1999) The human career: human biological and cultural origins, 2nd ed. University of Chicago Press, Chicago
  • Krings M, Stone A, Schmitz RW, Krainitzki H, Stoneking M, Pääbo S (1997) Neanderthal DNA sequences and the origin of modern humans. Cell 90:19–30
  • Lahr MM (1996) The evolution of modern human diversity: a study of cranial variation. Cambridge University Press, Cambridge, United Kingdom
  • Lahr MM, Foley RA (1998) Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Am J Phys Anthropol Suppl 27:137–176
  • Lamason RL, Mohideen MA, Mest JR, Wong AC, Norton HL, Aros MC, Jurynec MJ, Mao X, Humphreville VR, Humbert JE, Sinha S, Moore JL, Jagadeeswaran P, Zhao W, Ning G, Makalowska I, McKeigue PM, O'Donnell D, Kittles R, Parra EJ, Mangini NJ, Grunwald DJ, Shriver MD, Canfield VA, Cheng KC (2005). SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310: 1782-6.
  • LaVeist TA (1996) Why we should continue to study race...but do a better job: an essay on race, racism and health. Ethn Dis 6:21–29
  • ——— (ed) (2002) Race, ethnicity, and health. Jossey-Bass, San Francisco
  • Lee SS, Mountain J, Koenig BA (2001) The meanings of "race" in the new genomics: implications for health disparities research. Yale J Health Policy Law Ethics 1:33–75
  • Lewis B (1990) Race and slavery in the Middle East. Oxford University Press, New York
  • Li WH, Sadler LA (1991) Low nucleotide diversity in man. Genetics 129:513–523
  • Lieberman DE, McBratney BM, Krovitz G (2002) The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci USA 99:1134–1139
  • Lieberman L (2001) How "Caucasoids" got such big crania and why they shrank: from Morton to Rushton. Curr Anthropol 42:69–95
  • Leiberman and Jackson 1995 "Race and Three Models of Human Origins" in American Anthropologist 97(2) 231-242
  • Lieberman, Hampton, Littlefield, and Hallead 1992 "Race in Biology and Anthropology: A Study of College Texts and Professors" in Journal of Research in Science Teaching 29:301-321
  • Lewontin 1973 "The Apportionment of Human Diversity" in Evolutionary Biology 6:381-397
  • Lin SS, Kelsey JL (2000) Use of race and ethnicity in epidemiologic research: concepts, methodological issues, and suggestions for research. Epidemiol Rev 22:187–202
  • Livingstone 1962 "On the Non-Existence of Human Races" in Current Anthropology 3: 279-281
  • Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN (2003) Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33:177–182
  • Long, J.C. and Kittles, R.A. (2003). Human genetic diversity and the nonexistence of biological races. Hum Biol. 75, 449–71. [4]
  • Mahoney MC, Michalek AM (1998) Health status of American Indians/Alaska natives: general patterns of mortality. Fam Med 30:190–195
  • Marchini J, Cardon LR, Phillips MS, Donnelly P (2004) The effects of human population structure on large genetic association studies. Nat Genet 36:512–517
  • Marks J (1995) Human biodiversity: genes, race, and history. Aldine de Gruyter, New York
  • Mayr, E. (1969). Principles of Systematic Zoology. New York, NY: McGraw-Hill.
  • Mays VM, Ponce NA, Washington DL, Cochran SD (2003) Classification of race and ethnicity: implications for public health. Annu Rev Public Health 24:83–110
  • McDougall I, Brown FH, Fleagle JG (2005) Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433:733–736
  • McKeigue PM (2005) Prospects for admixture mapping of complex traits. Am J Hum Genet 76:1–7
  • Meltzer M (1993) Slavery: a world history, rev ed. DaCapo Press, Cambridge, MA
  • Miller GH, Magee JW, Johnson BJ, Fogel ML, Spooner NA, McCulloch MT, Ayliffe LK (1999) Pleistocene extinction of Genyornis newtoni: human impact on Australian megafauna. Science 283:205–208
  • Montagu (1941). "The Concept of Race in Light of Genetics" in Journal of Heredity 23: 241-247
  • Montagu (1942). Man’s Most Dangerous Myth: The Fallacy of Race
  • Morales-Díaz, Enrique, and Gabriel Aquino, and Michael Sletcher, ‘Ethnicity’, in Michael Sletcher, ed., New England, (Westport, CT, 2004).
  • Mörner M (1967) Race mixture in the history of Latin America. Little, Brown, Boston
  • Morton NE, Collins A (1998) Tests and estimates of allelic association in complex inheritance. Proc Natl Acad Sci USA 95:11389–11393
  • Mosse GL (1985) Toward the final solution, 2nd ed. University of Wisconsin Press, Madison
  • Nobles M (2000) Shades of citizenship: race and the census in modern politics. Stanford University Press, Stanford
  • Nordborg M (1998) On the probability of Neanderthal ancestry. Am J Hum Genet 63:1237–1240
  • Nordborg M, Tavare S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90
  • Ohno S (1996) The Malthusian parameter of ascents: what prevents the exponential increase of one's ancestors? Proc Natl Acad Sci USA 93:15276–15278
  • Olson S (2002) Mapping human history. Houghton Mifflin, Boston
  • Oppenheimer GM (2001) Paradigm lost: race, ethnicity, and the search for a new population taxonomy. Am J Public Health 91:1049–1055
  • Ossorio P, Duster T (2005) Controversies in biomedical, behavioral, and forensic sciences. Am Psychol 60:115–128
  • Ota Wang V, Sue S (2005) In the eye of the storm: race and genomics in research and practice. Am Psychol 60:37–45
  • Page GP, George V, Go RC, Page PZ, Allison DB (2003) "Are we there yet?": Deciding when one has demonstrated specific genetic causation in complex diseases and quantitative traits. Am J Hum Genet 73:711–719
  • Parra EJ, Kittles RA, Shriver MD (2004) Implications of correlations between skin color and genetic ancestry for biomedical research. Nat Genet 36:S54–S60
  • Parra EJ, Marcini A, Akey J, Martinson J, Batzer MA, Cooper R, Forrester T, Allison DB, Deka R, Ferrell RE, Shriver MD (1998) Estimating African American admixture proportions by use of population-specific alleles. Am J Hum Genet 63:1839–1851
  • Parra FC, Amado RC, Lambertucci JR, Rocha J, Antunes CM, Pena SD (2003) Color and genomic ancestry in Brazilians. Proc Natl Acad Sci USA 100:177–182 [5]
  • Patterson N, Hattangadi N, Lane B, Lohmueller KE, Hafler DA, Oksenberg JR, Hauser SL, Smith MW, O'Brien SJ, Altshuler D, Daly MJ, Reich D (2004) Methods for high-density admixture mapping of disease genes. Am J Hum Genet 74:979–1000
  • Pfaff CL, Barnholtz-Sloan J, Wagner JK, Long JC (2004) Information on ancestry from genetic markers. Genet Epidemiol 26:305–315
  • Platz EZ, Rimm EB, Willett WC, Kantoff PW, Giovannucci E (2000) Racial variation in prostate cancer incidence and in hormonal system markers among male health professionals. J Natl Cancer Inst 92:2009–2017
  • Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69:124–137
  • Pritchard JK, Cox NJ (2002) The allelic architecture of human disease genes: common disease-common variant...or not? Hum Mol Genet 11:2417–2423
  • Provine WB (1986) Geneticists and race. Am Zoologist 26:857–887
  • Rawlings JS, Weir MR (1992) Race- and rank-specific infant mortality in a US military population. Am J Dis Child 146:313–316
  • Rees JL (2003) Genetics of hair and skin color. Annu Rev Genet 37:67–90
  • Reich DA, Lander ES (2001) On the allelic spectrum of human disease. Trends Genet 17:502–510
  • Relethford JH (2002) Apportionment of global human genetic diversity based on craniometrics and skin color. Am J Phys Anthropol 118:393–398
  • Risch N (2000) Searching for the genetic determinants in a new millennium. Nature 405:847–856
  • Risch N, Burchard E, Ziv E, Tang H (2002) Categorization of humans in biomedical research: genes, race and disease. Genome Biol 3 [6] (electronically published July 1, 2002; accessed August 25, 2005)
  • Rivara F, Finberg L (2001) Use of the terms race and ethnicity. Arch Pediatr Adolesc Med 155:119
  • Rohde D, Olson S, Chang J (2004) Modeling the recent common ancestry of all living humans. Nature 431:562–566
  • Roseman CC (2004) Detecting interregionally diversifying natural selection on modern human cranial form by using matched molecular and morphometric data. Proc Natl Acad Sci USA 101:12824–12829
  • Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW (2002) Genetic structure of human populations. Science 298:2381–2385 [7]
  • Rotimi CN (2004) Are medical and nonmedical uses of large-scale genomic markers conflating genetics and "race"? Nat Genet

36:S43–S47

  • Rushton Philippe J. "The Race/Intelligence/IQ debat." http://danny.oz.au/communities/anthro-l/debates/race-iq/
  • Sallout B, Walker M (2003) The fetal origin of adult diseases. J Obstet Gynaecol 23:555–560
  • Sarich, Vincent, and Frank Miele. Race: The Reality of Human Differences. Westview Press, 2004.
  • Satta Y, Takahata N (2002) Out of Africa with regional interbreeding? Modern human origins. Bioessays 24:871–875
  • Schwartz M, Vissing J (2002) Paternal Inheritance of Mitochondrial DNA. N Engl J Med 347:576-580
  • Serre D, Langaney A, Chech M, Teschler-Nicola M, Paunovic M, Mennecier P, Hofreiter M, Possnert G G, Pääbo S (2004) No evidence of Neandertal mtDNA contribution to early modern humans. PLoS Biol 2:313–317
  • Shanklin, Eugenia Representations of Race and Racism in American Anthropology Current Anthropology, volume 41 (2000), pages 99–103 DOI: 10.1086/300105 PubMed ID: 10593726
  • Shields AE, Fortun M, Hammonds EM, King PA, Lerman C, Rapp R, Sullivan PF (2005) The use of race variables in genetic studies of complex traits and the goal of reducing health disparities: a transdisciplinary perspective. Am Psychol 60:77–103
  • Shipler D (1997) A country of strangers: blacks and whites in America. Knopf, New York
  • Shostak S (2003) Locating gene-environment interaction: at the intersections of genetics and public health. Soc Sci Med 56:2327–2342
  • Shriver, M. D. et al. (2003). Skin pigmentation, biogeographical ancestry, and admixture mapping. Hum. Genet. 112, 387–399. [8]
  • Sider, Gerald 1993 Lumbee Indian Histories: Race, Ethnicity, and Indian Identity in the Southern United States
  • Smedley A (1999) Race in North America: origin and evolution of a worldview, 2nd ed. Westview Press, Boulder
  • Smelser N, Wilson WJ, Mitchell F (eds) (2001) America becoming: racial trends and their consequences. Vol 2. National Academy Press, Washington, DC
  • Smith DJ, Lusis AJ (2002) The allelic structure of common disease. Hum Mol Genet 11:2455–2461
  • Smith, Fred 1982 "Upper Pleistocene Hominid Evolution in South-Central Europe: A Review of the Evidence and Analysis of Trends" Current Anthropology 23: 667-686
  • Smith MW, Patterson N, Lautenberger JA, Truelove AL, McDonald GJ, Waliszewska A, Kessing BD, et al (2004) A high-density admixture map for disease gene discovery in African Americans. Am J Hum Genet 74:1001–1013
  • Snowden FM (1983) Before color prejudice: the ancient view of blacks. Harvard University Press, Cambridge, MA
  • Spickard PR (1992) The illogic of American racial categories. In: Root MPP (ed) Racially mixed people in America. Sage, Newbury Park, CA, pp 12–23
  • Stanton W (1960) The leopard's spots: scientific attitudes toward race in America, 1815–1859. University of Chicago Press, Chicago
  • Stevens J (2003) Racial meanings and scientific methods: changing policies for NIH-sponsored publications reporting human variation. J Health Polit Policy Law 28:1033–1087
  • Stringer C (2002) Modern human origins: progress and prospects. Philos Trans R Soc Lond B Biol Sci 357:563–579
  • Sturm RA, Teasdale RD, Box NF (2001) Human pigmentation genes: identification, structure and consequences of polymorphic variation. Gene 277:49–62
  • Swisher CC 3rd, Curtis GH, Jacob T, Getty AG, Suprijo A, Widiasmoro (1994) Age of the earliest known hominids in Java, Indonesia. Science 263:1118–1121
  • Takahata N, Lee S, Satta Y (2001) Testing multiregionality of modern human origins. Mol Biol Evol 18:172–183
  • Takaki R (1993) A different mirror: a history of multicultural America. Little, Brown, Boston
  • Tang H, Quertermous T, Rodriguez B, Kardia SL, Zhu X, Brown A, Pankow JS, Province MA, Hunt SC, Boerwinkle E, Schork NJ, Risch NJ (2005). Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies. Am J Hum Genet 76, 268-75. [9]
  • Tate SK, Goldstein DB (2004) Will tomorrow's medicines work for everyone? Nat Genet 36:S34–S42
  • Templeton AR (1998) Human races: a genetic and evolutionary perspective. Am Anthropol 100:632–650
  • ——— (2002) Out of Africa again and again. Nature 416:45–51
  • Thienpont, Kristiaan and Cliquet, Robert (eds.) In-group/out-group gedrag in evolutiebiologisch perspectief, Leuven : Garant, 1999. ISBN 90-5350-970-4
  • Thomas DC, Witte JS (2002) Point: population stratification: a problem for case-control studies of candidate-gene associations? Cancer Epidemiol Biomarkers Prev 11:505–512
  • Thorne and Wolpoff 1992 "The Multiregional Evolution of Humans" in Scientific American (April) 76-83
  • Tishkoff SA, Kidd KK (2004) Implications of biogeography of human populations for "race" and medicine. Nat Genet 36:S21–S27
  • Tishkoff SA, Pakstis AJ, Stoneking M, Kidd JR, Destro-Bisol G, Sanjantila A, Lu R-b, Deinard AS, Sirugo G, Jenkins T, Kidd KK, Clark AG (2000) Short tandem-repeat polymorphism/Alu haplotype variation at the PLAT locus: implications for modern human origins. Am J Hum Genet 67:901–925
  • Tishkoff SA, Verrelli B (2003) Patterns of human genetic diversity: implications for human evolutionary history and disease. Annu Rev Genomics Hum Genet 4:293–340
  • Tishkoff SA, Williams SM (2002) Genetic analysis of African populations: human evolution and complex disease. Nat Rev Genet 3:611–621
  • Todorov T (1993) On human diversity. Harvard University Press, Cambridge, MA
  • Trinkaus E, Milota S, Rodrigo R, Mircea G, Moldovan O (2003) An early modern human from the Pestera cu Oase, Romania. Proc Natl Acad Sci USA 100:11231–11236
  • Underhill PA, Underhill PA, Shen P, Lin AA, Jin L, Passarino G, Yang WH, Kauffman E, Bonne-Tamir B, Bertranpetit J, Francalacci P, Ibrahim M, Jenkins T, Kidd JR, Mehdi SQ, Seielstad MT, Wells RS, Piazza A, Davis RW, Feldman MW, Cavalli-Sforza LL, Oefner PJ (2000) Y chromosome sequence variation and the history of human populations. Nat Genet 26:358–361
  • Vega WA, Amaro H (1994) Latino outlook: good health, uncertain prognosis. Annu Rev Public Health 15:39–67
  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, et al (2001) The sequence of the human genome. Science 291:1304–1351
  • Wacholder S, Rothman N, Caporaso N (2002) Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. Cancer Epidemiol Biomarkers Prev 11:513–520
  • Wall JD (2000) Detecting ancient admixture in humans using sequence polymorphism data. Genetics 154:1271–1279
  • Wallace R, Wallace D, Wallace RG (2004) Coronary heart disease, chronic inflammation, and pathogenic social hierarchy: a biological limit to possible reductions in morbidity and mortality. J Natl Med Assoc 96:609–619
  • Waters M (1990) Ethnic options: choosing identities in America. University of California Press, Berkeley
  • Weatherall D (1999) From genotype to phenotype: genetics and medical practice in the new millennium. Philos Trans R Soc Lond B Biol Sci 354:1995–2010
  • White TD, Asfaw B, DeGusta D, Gilbert H, Richards GD, Suwa G, Howell FC (2003) Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423:742–747
  • Whyatt RM, Rauh V, Barr DB, Camann DE, Andrews HF, Garfinkel R, Hoepner LA, Diaz D, Dietrich J, Reyes A, Tang D, Kinney PL, Perera FP (2004) Prenatal insecticide exposures and birth weight and length among an urban minority cohort. Environ Health Perspect 112:1125–1132
  • Wiencke JK (2004) Impact of race/ethnicity on molecular pathways in human cancer. Nat Rev Cancer 4:79–84
  • Wilson JF, Weale ME, Smith AC, Gratrix F, Fletcher B, Thomas MG, Bradman N, Goldstein DB (2001) Population genetic structure of variable drug response. Nat Genet 29:265–269
  • Wilson and Brown 1953 "The Subspecies Concept and Its Taxonomic Application" in Systematic Zoology 2: 97-110
  • Wolpoff, Milford 1993 "Multiregional Evolution: The Fossil Alternative to Eden" in The Human Evolution Sourcebook Russell Ciochon and John Fleagle, eds.
  • Wolpoff M, Caspari R (1997) Race and human evolution: a fatal attraction. Simon & Schuster, New York
  • Wolpoff M, Hawks J, Frayer DW, Hunley K (2001) Modern human ancestry at the peripheries: a test of the replacement theory. Science 291:293–297
  • Yu N, Chen FC, Ota S, Jorde LB, Pamilo P, Patthy L, Ramsay M, Jenkins T, Shyue SK, Li WH (2002) Larger genetic differences within Africans than between Africans and Eurasians. Genetics 161:269–274

External links[edit]

You can help Anarchopedia by expanding this article by adding some of these quotes from Wikiquote

Official statements and standards[edit]

Review articles[edit]

Research papers[edit]

Popular press[edit]

Others[edit]


This article contains content from Wikipedia. Current versions of the GNU FDL article race on WP may contain information useful to the improvement of this article WP