Still working to recover. Please don't edit quite yet.
other names of large numbers
In addition to the standard names of large numbers, this table contains a list of numbers that extend to very large sums. The often-used names "zillion", "jillion" and "bajillion" are nowhere to be found on this list, since they are used to describe a large number of undefined scope, usually in an informal or colloquial context.
Value | Extended Short scale |
Extended Long scale (Modified Chuquet): (Pelletier) |
Extended Myriadic (Knuth) |
Extended Myriadic (Knuth-Pelletier) |
Example of Numbers in this range |
---|---|---|---|---|---|
0 | Zero | Zero | Zero | Zero | |
<math>{10}^0</math> | One | One | One | One | π, e |
<math>{10}^3</math> | Thousand | Thousand | Thousand | Thousand | |
<math>{10}^4</math> | Ten thousand | Ten thousand | Myriad | Myriad | |
<math>{10}^6</math> | Million | Million | Hundred myriad | Hundred myriad | |
<math>{10}^8</math> | Hundred million | Hundred million | Myllion | Myllion | |
<math>{10}^9</math> | Billion | Milliard | Ten myllion | Ten myllion | |
<math>{10}^{12}</math> | Trillion | Billion | Myriad myllion | Myriad myllion | |
<math>{10}^{15}</math> | Quadrillion | Billiard | Thousand myriad myllion | Thousand myriad myllion | Age of universe in seconds |
<math>{10}^{16}</math> | Ten quadrillion | Ten billiard | Byllion | Mylliard | |
<math>{10}^{24}</math> | Septillion | Quadrillion | Myllion byllion | Myllion mylliard | Size (cm) of the homogenous patch |
<math>{10}^{32}</math> | Hundred nonillion | Hundred quintillion | Tryllion | Byllion | Temperature of universe (K) in Planck time |
<math>{10}^{33}</math> | Decillion | Quintilliard | Ten tryllion | Ten byllion | |
<math>{10}^{60}</math> | Novemdecillion | Decillion | Myriad myllion byllion tryllion | Myriad myllion mylliard byllion | |
<math>{10}^{63}</math> | Vigintillion | Decilliard | Thousand myriad myllion byllion tryllion | Thousand myriad myllion mylliard byllion | |
<math>{10}^{64}</math> | Ten vigintillion | Ten decilliard | Quadryllion | Bylliard | Atoms in universe |
<math>{10}^{100}</math> | Googol | ? | Myriad tryllion quadryllion | Myriad byllion bylliard | Shannon number |
<math>{10}^{128}</math> | Hundred unquadragintillion | Hundred unvigintillion | Quintyllion | Tryllion | |
<math>{10}^{256}</math> | Ten quattoroctogintillion | Ten duoquadragintilliard | Sextyllion | Trylliard | |
<math>{10}^{303}</math> | Centillion | Quinquagintilliard | Thousand myriad myllion tryllion sextyllion | Thousand myriad myllion byllion trylliard | |
<math>{10}^{512}</math> | Hundred Centinovemsexagintillion | Hundred Quinoctogintillion | Septyllion | Quadryllion | |
<math>{10}^{600}</math> | Centinovemnonagintillion | Centillion | Myllion byllion quadryllion septyllion | Myllion mylliard trylliard quadryllion | |
<math>{10}^{603}</math> | Ducentillion | Centilliard | Thousand myllion byllion quadryllion septyllion | Thousand myllion mylliard trylliard quadryllion | |
<math>{10}^{1024}</math> | Ten trecentiquadragintillion | Ten Centiseptuagintillion | Octyllion | Quadrylliard | |
<math>{10}^{2048}</math> | Hundred Sexincentiunoctogintillion | Hundred Trecentiunquadragintillion | Nonyllion | Quintyllion | |
<math>{10}^{3003}</math> | Millillion | Quincentilliard? | Thousand myllion byllion tryllion quintyllion sextyllion septyllion nonyllion | Thousand myllion mylliard byllion tryllion trylliard quadryllion quintyllion | |
<math>{10}^{4096}</math> | Ten Millitrecentiquattuorsexagintillion | Ten Sexincentiduooctagintilliard | Decyllion | Quintylliard | |
<math>{10}^{6000}</math> | platillion | Millillion | Byllion tryllion sextyllion septyllion octyllion decyllion | Mylliard byllion trylliard quadryllion quadrylliard quintylliard | |
<math>{10}^{6003}</math> | Dumillillion? | Millilliard | Thousand byllion tryllion sextyllion septyllion octyllion decyllion | Thousand mylliard byllion trylliard quadryllion quadrylliard
quintylliard | |
<math>{10}^{8192}</math> | Hundred Dumilliseptincentinovemvigintillion | Hundred Millitrecentiquinsexagintillion | Undecyllion | Sextyllion | |
<math>{10}^{16384}</math> | Ten Quinmilliquadrincentisexagintillion | Ten Dumilliseptincentitrigintilliard | Duodecyllion | Sextylliard | |
<math>{10}^{30,003}</math> | Myrillion | Quinmillilliard? | Thousand byllion tryllion sextyllion octyllion decyllion undecyllion duodecyllion | Thousand mylliard byllion trylliard quadrylliard quintylliard sextyllion sextylliard | |
<math>{10}^{60,000}</math> | Myrianonmillinoncentinovemnonagintillion | Myrillion | Tryllion quadryllion septyllion nonyllion undecyllion duodecyllion tredecyllion | Byllion bylliard quadryllion quintyllion sextyllion sextylliard septyllion | |
<math>{10}^{60,003}</math> | Dumyrillion? | Myrilliard | Thousand tryllion quadryllion septyllion nonyllion undecyllion duodecyllion tredecyllion | Thousand byllion bylliard quadryllion quintyllion sextyllion sextylliard septyllion | |
<math>{10}^{300,003}</math> | Decemyrillion | Quinmyrilliard | Thousand tryllion quadryllion quintyllion sextyllion septyllion decyllion tredecyllion sexdecyllion | Thousand byllion bylliard tryllion trylliard quadryllion quintylliard septyllion octylliard | |
<math>{10}^{600,000}</math> | Novemnonagintanoncentinonmillinovamyriadecemyrillion | Decemyrillion | Quadryllion quintyllion sextyllion septyllion octyllion undecyllion quattordecyllion septemdecyllion | Bylliard tryllion trylliard quadryllion quadrylliard sextyllion septylliard nonyllion | |
<math>{10}^{600,003}</math> | Dudecemyrillion | Decemyrilliard | Thousand quadryllion quintyllion sextyllion septyllion octyllion undecyllion quattordecyllion septemdecyllion | Thousand bylliard tryllion trylliard quadryllion quadrylliard sextyllion septylliard nonyllion | |
<math>{10}^{2,097,152}</math> | Ten Decemyrianoncentiunquadragintillion | Ten Tredecemyriaquadrincentisexseptuagintillion | Novemdecyllion | Decyllion | Number of books in the Library of Babel is 251,312,000?2×101,834,097. |
<math>{10}^{3,000,003}</math> | Micrillion | ? | ? | ? | |
<math>{10}^{4,194,304}</math> | ? | ? | Vigintyllion | Decylliard | |
<math>{10}^{6,000,000}</math> | ? | Micrillion | ? | ? | |
<math>{10}^{8,388,608}</math> | ? | ? | Unvigintyllion | Undecylliard | |
<math>{10}^{2,147,483,648}</math> | ? | ? | Novemvigintyllion | Quindecyllion | |
<math>{10}^{3,000,000,003}</math> | Nanillion | ? | ? | ? | |
<math>{10}^{4,294,967,296}</math> | ? | ? | Trigintyllion | Quindecylliard | |
<math>{10}^{6,000,000,000}</math> | ? | Micrilliard | ? | ? | |
<math>{10}^{8,589,934,592}</math> | ? | ? | Untrigintyllion | Sexdecyllion | |
<math>{10}^{{3 * {{10}^{12}}} + 3}</math> | Picillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{12}}}</math> | ? | Nanillion | ? | ? | |
<math>{10}^{{3 * {{10}^{15}}} + 3}</math> | Femtillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{15}}}</math> | ? | Nanilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{18}}} + 3}</math> | Attillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{18}}}</math> | ? | Picillion | ? | ? | |
<math>{10}^{{3 * {{10}^{21}}} + 3}</math> | Zeptillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{21}}}</math> | ? | Picilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{24}}} + 3}</math> | Yoctillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{24}}}</math> | ? | Femtillion | ? | ? | |
<math>{10}^{{3 * {{10}^{27}}} + 3}</math> | Xonillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{27}}}</math> | ? | Femtilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{30}}} + 3}</math> | Dekillion Vecillion Contillion |
? | ? | ? | |
<math>{10}^{6 * {{10}^{30}}}</math> | ? | Attillion | ? | ? | |
<math>{{10}^2}^{102}</math> | ? | ? | Centyllion | Quinquagintylliard | |
<math>{10}^{{3 * {{10}^{33}}} + 3}</math> | Mecillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{33}}}</math> | ? | Attilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{36}}} + 3}</math> | Duecillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{36}}}</math> | ? | Zeptillion | ? | ? | |
<math>{10}^{{3 * {{10}^{39}}} + 3}</math> | Trecillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{39}}}</math> | ? | Zeptilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{42}}} + 3}</math> | Tetrecillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{42}}}</math> | ? | Yoctillion | ? | ? | |
<math>{10}^{{3 * {{10}^{45}}} + 3}</math> | Pentecillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{45}}}</math> | ? | Yoctilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{48}}} + 3}</math> | Hexecillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{48}}}</math> | ? | Xonillion | ? | ? | |
<math>{10}^{{3 * {{10}^{51}}} + 3}</math> | Heptecillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{51}}}</math> | ? | Xonilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{54}}} + 3}</math> | Octecillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{54}}}</math> | ? | Wettillion | ? | ? | |
<math>{10}^{{3 * {{10}^{57}}} + 3}</math> | Ennecillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{57}}}</math> | ? | Wettilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{60}}} + 3}</math> | Icocillion Ducontillion |
? | ? | ? | |
<math>{10}^{6 * {{10}^{60}}}</math> | ? | Dekillion | ? | ? | |
<math>{10}^{6 * {{10}^{63}}}</math> | ? | Dekilliard | ? | ? | |
<math>{{10}^2}^{201}</math> | ? | ? | ? | Centyllion | |
<math>{{10}^2}^{202}</math> | ? | ? | Ducentyllion? | Centylliard | |
<math>{10}^{{3 * {{10}^{90}}} + 3}</math> | Triacontillion | ? | ? | ? | |
<math>{{10}^{10}}^{100}</math> | Googolplex | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{120}}} + 3}</math> | Tetracontillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{150}}} + 3}</math> | Pentacontillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{180}}} + 3}</math> | Hexacontillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{210}}} + 3}</math> | Heptacontillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{240}}} + 3}</math> | Octacontillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{270}}} + 3}</math> | Ennacontillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{300}}} + 3}</math> | Hectillion Icocontillion |
? | ? | ? | |
<math>{{10}^2}^{1,002}</math> | ? | ? | Millyllion | ? | |
<math>{10}^{6 * {{10}^{600}}}</math> | ? | Hectillion | ? | ? | |
<math>{10}^{6 * {{10}^{603}}}</math> | ? | Hectilliard | ? | ? | |
<math>{{10}^2}^{2,001}</math> | ? | ? | ? | Millyllion | |
<math>{{10}^2}^{2,002}</math> | ? | ? | Dumillyllion | Millylliard | |
<math>{10}^{{3 * {{10}^{3,000}}} + 3}</math> | Killillion Onillion Zerillion |
? | ? | ? | |
<math>{{10}^2}^{10,002}</math> | ? | ? | Myryllion | ? | |
<math>{10}^{6 * {{10}^{6,000}}}</math> | ? | Killillion | ? | ? | |
<math>{10}^{6 * {{10}^{6,003}}}</math> | ? | Killilliard | ? | ? | |
<math>{{10}^2}^{20,001}</math> | ? | ? | ? | Myryllion | |
<math>{{10}^2}^{20,002}</math> | ? | ? | Dumyryllion | Myrylliard | |
<math>{10}^{{3 * {{10}^{3,000,000}}} + 3}</math> | Megillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6,000,000}}}</math> | ? | Megillion Zerillion |
? | ? | |
<math>{10}^{{3 * {{10}^{3,000,000,000}}} + 3}</math> | Gigillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6,000,000,000}}}</math> | ? | Megilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{12}}}}} + 3}</math> | Terillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{12}}}}}</math> | ? | Gigillion | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{15}}}}} + 3}</math> | Petillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{15}}}}}</math> | ? | Gigilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{18}}}}} + 3}</math> | Exillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{18}}}}}</math> | ? | Terillion | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{21}}}}} + 3}</math> | Zettillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{21}}}}}</math> | ? | Terilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{24}}}}} + 3}</math> | Yottillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{24}}}}}</math> | ? | Petillion | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{27}}}}} + 3}</math> | Xennillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{27}}}}}</math> | ? | Petilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{30}}}}} + 3}</math> | Vekillion Teenillion |
? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{30}}}}}</math> | ? | Exillion | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{33}}}}} + 3}</math> | Mekillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{33}}}}}</math> | ? | Exilliard | ? | ? | First Skewes' number eee79 ( approx. 10101034 ) |
<math>{10}^{{3 * {{10}^{3 * {{10}^{36}}}}} + 3}</math> | Duekillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{36}}}}}</math> | ? | Zettillion | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{39}}}}} + 3}</math> | Trekillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{39}}}}}</math> | ? | Zettilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{42}}}}} + 3}</math> | Tetrekillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{42}}}}}</math> | ? | Yottillion | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{45}}}}} + 3}</math> | Pentekillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{45}}}}}</math> | ? | Yottilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{48}}}}} + 3}</math> | Hexekillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{48}}}}}</math> | ? | Xennillion | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{51}}}}} + 3}</math> | Heptekillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{51}}}}}</math> | ? | Xennilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{54}}}}} + 3}</math> | Octekillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{54}}}}}</math> | ? | Wottillion | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{57}}}}} + 3}</math> | Ennekillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{57}}}}}</math> | ? | Wottilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{60}}}}} + 3}</math> | Icokillion Twentillion |
? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{60}}}}}</math> | ? | Onillion? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{90}}}}} + 3}</math> | Thirtillion | ? | ? | ? | |
<math>{{{10}^{10}}^{10}}^{100}</math> | Googolduplex | ||||
<math>{10}^{{3 * {{10}^{3 * {{10}^{120}}}}} + 3}</math> | Fortillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{150}}}}} + 3}</math> | Fiftillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{180}}}}} + 3}</math> | Sixtillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{210}}}}} + 3}</math> | Seventillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{240}}}}} + 3}</math> | Eightillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{270}}}}} + 3}</math> | Nintillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{300}}}}} + 3}</math> | Hundrillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{600}}}}}</math> | ? | Onilliard? | ? | ? | Second Skewes' number (1010101000) |
<math>{10}^{{3 * {{10}^{3 * {{10}^{3,000}}}}} + 3}</math> | Thousillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6,000}}}}}</math> | ? | Zerilliard | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{30,000}}}}} + 3}</math> | Myriaillion Manillion |
? | ? | ? | |
<math>{10}^{{3 * {{10}^{6 * {{10}^{60,000}}}}}}</math> | ? | Quillion? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{300,000}}}}} + 3}</math> | Lakhillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{600,000}}}}} + 3}</math> | ? | Quilliard? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{3,000,000}}}}} + 3}</math> | ? | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6,000,000}}}}}</math> | ? | Teenillion | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{30,000,000}}}}} + 3}</math> | Crorillion | ? | ? | ? | |
<math>{10}^{{3 * {{10}^{3 * {{10}^{300,000,000}}}}} + 3}</math> | Awkillion | ? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6,000,000,000}}}}}</math> | ? | Teenilliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{12}}}}}}}</math> | ? | Twentillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{15}}}}}}}</math> | ? | Twentilliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{18}}}}}}}</math> | ? | Thirtillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{21}}}}}}}</math> | ? | Thirtilliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{24}}}}}}}</math> | ? | Fortillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{27}}}}}}}</math> | ? | Fortilliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{30}}}}}}}</math> | ? | Fiftillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{33}}}}}}}</math> | ? | Fiftilliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{36}}}}}}}</math> | ? | Sixtillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{39}}}}}}}</math> | ? | Sixtilliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{42}}}}}}}</math> | ? | Seventillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{45}}}}}}}</math> | ? | Seventilliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{48}}}}}}}</math> | ? | Eightillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{51}}}}}}}</math> | ? | Eightilliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{54}}}}}}}</math> | ? | Nintillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{57}}}}}}}</math> | ? | Nintilliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{60}}}}}}}</math> | ? | Hundrillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{63}}}}}}}</math> | ? | Hundrilliard | ? | ? | |
<math>{{{{{10}^{10}}^{10}}^{10}}^{100}}</math> | Googoltriplex | ||||
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{600}}}}}}}</math> | ? | Thousillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{603}}}}}}}</math> | ? | Thousilliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{6,000}}}}}}}</math> | ? | Myriaillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{6,003}}}}}}}</math> | ? | Myriailliard | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{60,000}}}}}}}</math> | ? | Manillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{60,003}}}}}}}</math> | ? | Manilliard? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{600,000}}}}}}}</math> | ? | Lakhillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{600,003}}}}}}}</math> | ? | Lakhilliard? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{6,000,000}}}}}}}</math> | ? | Wanillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{6,000,003}}}}}}}</math> | ? | Wanilliard? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{60,000,000}}}}}}}</math> | ? | Crorillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{60,000,003}}}}}}}</math> | ? | Crorilliard? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{600,000,000}}}}}}}</math> | ? | Awkillion | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{600,000,003}}}}}}}</math> | ? | Awkilliard? | ? | ? | |
<math>{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^{6 * {{10}^9}}}}}}}}</math> | Bentrizillion | ? | ? | ? | |
<math>{{{{{10}^{10}}^{10}}^{10}}^{10}}^{100}</math> | Googolquadriplex | ? | ? | ? | Graham's number is much bigger. |
Googolduplex and (98 more plexes) | Googolcentplex | ... | ... | ... |
|- |Googolduplex and (998 more plexes) || Googolmilleplex || ... || ... || ... |} |Googolplex and (999,999 more plexes) || Googolmilleplex || ... || ... || ... |} |Googolplex and (999,999,999 more plexes) || Googolgigaplex || ... || ... || ... |} |Googolplex and (999,999,999,999 more plexes) || Googolteraplex || ... || ... || ... |} |Googolplex and (999,999,999,999,999 more plexes) || Googolpetaplex || ... || ... || ... |} |Googolplex to the power of a googolplex || Fzgoogolplex || ... || ... || ... |}
Googillion - A googillion began as an astronomer's "largest number" synonym for everyday real-world objects that are unknown and unknowable numbers. Example: from string theory, how many strings are there in the universe? The answer is a googillion. In theory, there is a real finite number of strings in the universe at any given point in time. The number is both an unknown and unknowable largest number. So a googillion is a general term for all extremely large numbers. Since any largest number can become larger simply by adding the number one, all the strings in the universe plus one is also a googillion. A googillion does not represent a specific number. It is a flexible term that represents any and many numbers that are too large to be proved.
Infinity Scrapers
Mathematician Jonathan Bowers has proposed a series of names (including giggol, gaggol, geegol, goggol, tridecal, tetratri, dutritri, xappol, dimendecal, gongulus, trimentri, goppatoth, golapulus, golapulusplex, golapulusplux, big boowa and guapamonga) for extremely large quantities, which he terms infinity scrapers (a pun on skyscraper), many of which are so unspeakably and unprecedentedly large as to require special newly-devised extended mathematical notations in order to be expressed. A full description can be found in the external links section.